预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年吉林省榆树市一高数学高一上学期期末考试模拟试题含解析 一、单选题(本题共8小题,每题5分,共40分) 1、将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是 A. B. C. D. 2、函数的定义域为() A.(-∞,2) B.(-∞,2] C. D. 3、命题,则命题p的否定是() A. B. C. D. 4、已知幂函数的图像过点,则下列关于说法正确的是() A.奇函数 B.偶函数 C.定义域为 D.在单调递减 5、已知角的终边过点,则() A. B. C. D. 6、某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是 A.(1),(3) B.(1),(4) C.(2),(4) D.(1),(2),(3),(4) 7、已知是奇函数,且满足,当时,,则在内是 A.单调增函数,且 B.单调减函数,且 C.单调增函数,且 D.单调减函数,且 8、,,的大小关系是() A. B. C. D. 二、多选题(本题共3小题,每题6分,共18分) 9、下列说法正确的是() A.若的终边上的一点坐标为(),则 B.若是第一象限角,则是第一或第三象限角 C.若,,则 D.对,恒成立 10、多选已知a,b,c,d均为实数,下列不等关系推导不成立的是() A.若,,则 B若,,则 C.若,,则 D.若,,则 11、将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为() A. B. C.0 D. 三、填空题(本题共3小题,每题5分,共15分) 12、已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______ 13、若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则的值为___________. 14、已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________ 四、解答题(本题共7小题,每题11分,共77分) 15、已知函数f(x)= (1)判断函数f(x)的奇偶性; (2)判断并证明函数f(x)的单调性; (3)解不等式:f(x2-2x)+f(3x-2)<0; 16、计算下列各式的值. (1); (2). 17、已知集合. (1)若是空集,求取值范围; (2)若中只有一个元素,求的值,并把这个元素写出来. 18、王先生发现他的几位朋友从事电子产品的配件批发,生意相当火爆.因此,王先生将自己的工厂转型生产小型电子产品的配件.经过市场调研,生产小型电子产品的配件.需投入固定成本为2万元,每生产万件,还需另投入万元,在年产量不足8万件时,(万元);在年产量不低于8万件时,(万元).每件产品售价为4元.通过市场分析,王先生生产的电子产品的配件都能在当年全部售完. (1)写出年利润(万元)关于年产量(万件)的函数解析式; (2)求年产量为多少万件时,王先生在电子产品的配件的生产中所获得的年利润最大?并求出年利润的最大值? 19、已知集合. (1)若,求a的值; (2)若且“”是“”的必要不充分条件,求实数a的取值范围. 20、已知函数为的零点,为图象的对称轴 (1)若在内有且仅有6个零点,求; (2)若在上单调,求的最大值 21、设函数. (1)当时,求函数的最小值; (2)若函数的零点都在区间内,求的取值范围. 参考答案 一、单选题(本题共8小题,每题5分,共40分) 1、答案:C 【解析】将函数图象向左平移个单位得到,令,当时得对称轴为 考点:三角函数性质 2、答案:D 【解析】利用根式、分式的性质列不等式组求定义域即可. 【详解】由题设,,可得, 所以函数定义域为. 故选:D 3、答案:A 【解析】全称命题的否定是特称命题,并将结论加以否定. 【详解】因为命题,所以命题p的否定是, 故选:A. 4、答案:D 【解析】 设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项. 【详解】设幂函数为,因为函数过点, 所以,则, 所以, 该函数定义域为,则其既不是奇函数也不是偶函数, 且由可知,该幂函数在单调递减. 故选:D. 5、答案:A 【解析】根据三角函数的定义计算可得; 【详解】解:因为角终边过点,所以; 故选:A 6、答案:A 【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球 7、答案:A 【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求 【详解】∵f(x+1)=f(x﹣1), ∴f(x+2)=f(x)即f(x)是周期为2的周期函数 ∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数, ∴