预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二维单步交替方向隐式时域有限差分法吸收边界性能分析 Abstract: Thetwo-dimensionalsingle-stepsalternatingimplicittime-domainfinite-differencemethod(ADI-TDFDM)iswidelyusedinmodelingwavepropagationinthepresenceofcomplexgeologicalstructures.However,theperformanceofADI-TDFDMintermsofitsabilitytohandleabsorbingboundaryconditionsisstillunderinvestigation.Inthispaper,weexaminetheperformanceofADI-TDFDMwithdifferentabsorbingboundaryconditions,includingthePerfectlyMatchedLayer(PML)andConvolutionalPerfectlyMatchedLayer(CPML),throughnumericalsimulations.Ourresultsindicatethat,foragivensetofparametersandagivennumericalmodel,CPMLhasbetterperformancethanPMLinabsorbingthescatteredwaves. Introduction: TheADI-TDFDMisapowerfulandwidelyusednumericalsimulationmethodinthestudyofwavepropagation.TheADI-TDFDMisbasedonthefinite-differencemethod(FDM)andtheimplicittime-steppingalgorithm.TheADI-TDFDMcanaccuratelysimulatewavepropagationinthepresenceofcomplexgeologicalstructures. TheADI-TDFDMhassubstantialadvantagesoverothernumericalmethodsinmodelingwavepropagation,suchasitsstabilityandcomputationalefficiency.However,theperformanceofADI-TDFDMintermsofitsabilitytohandleabsorbingboundaryconditionsisstillunderinvestigation. Inthispaper,wewillexaminetheperformanceofADI-TDFDMwithdifferentabsorbingboundaryconditions.WefirstintroducetheADI-TDFDManditsimplementationintwo-dimensionalsimulations.Then,wewilldiscussthetheorybehinddifferentabsorbingboundaryconditionsandcomparetheirperformanceusingnumericalsimulation. ADI-TDFDM: TheADI-TDFDMisanumericalsimulationmethodusedtomodelwavepropagation.TheADI-TDFDMisbasedontheimplicittime-steppingalgorithm,whichismorestablethantheexplicittime-steppingalgorithm.TheADI-TDFDMisalsomorecomputationallyefficientthanothernumericalmethods. TheADI-TDFDMisbasedonthefollowingequation: (Eq.1)U^{n+1}=B_x^{-1}(A_yU^{(n+1/2)}+B_yU^{n}+C_yU^{(n-1/2)}) whereUisthewavefield,nisthetimestep,xandyarethespatialdirections,andA,B,andCarematrices. TheADI-TDFDMcanbeimplementedintwo-dimensionalsimulationsasfollows: (Eq.2)