预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

必修3考察两个试验:(2)掷一枚质地均匀的骰子,结果只有6个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”.1例1从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?1六个基本事件 的概率都是对于某些随机事件,也可以不通过大量重复实验,而只通过对一次实验中可能出现的结果的分析来计算概率。问题4:向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?问题5:某同学随机地向一靶心进行射击,这一试验的结果有:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。 你认为这是古典概型吗? 为什么?掷一颗均匀的骰子,(A)同时抛掷两枚均匀的硬币,会出现几种结果?列举出来.例3、同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少?(6,6)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?因此,在投掷两个骰子的过程中,我们必须对两个骰子加以标号区分例3:假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2…,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他到自动提款机上随机试一次密码就能取到钱的概 率是多少?解:这个人随机试一个密码,相当做1次随机试验,试验的基本事件(所有可能的结果)共有10000种,它们分别是0000,0001,0002,…,9998,9999.由于是随机地试密码,相当于试验的每一个结果试等可能的.所以例4:某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽取2听,检测出不合格产品的概率有多大?练习1:某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件? (2)摸出的2只球都是白球的概率是多少? 解(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5). 因此,共有10个基本事件. (2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A),242.做投掷二颗骰子试验,用(x,y)表示结果,其中x表示第一 颗骰子出现的点数,y表示第二颗骰子出现的点数,求: (1)事件“出现点数之和大于8”的概率是 (2)事件“出现点数相等”的概率是4.(2010·山东卷)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率; (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n, 求n<m+2的概率.27求古典概型概率的步骤: ⑴求基本事件的总数; ⑵求事件A包含的基本事件的个数; ⑶代入计算公式: