预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

对数运算性质换底公式 三、讲解范例: 例1求log89.log2732的值. 解:因为log23=a,则,又∵log37=b, ∴ 例3设且3x=4y=6z 1求证;2比较的大小例3设且3x=4y=6z 1求证;2比较的大小 例3设且 1求证;2比较的大小 证明1:设∵∴ 取对数得:,, ∴ 2 ∴分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将logac移到等式左端,或者将b变为对数形式 四、小结 利用换底公式“化异为同”是解决有关对数问题的基本思想法,它在求值或恒等变形中作了重要作用,在解题过程中应注意: 1.针对具体问题,选择好底数. 2.注意换底公式与对数运算法则结合使用. 3.换底公式的正用与反用.