预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于卷积网络集成的面部表情识别方法 Title:FacialExpressionRecognitionMethodbasedonConvolutionalNeuralNetworkEnsembles Abstract: Facialexpressionrecognitionplaysacrucialroleinvariousdomainssuchashuman-computerinteraction,affectivecomputing,andsocialrobotics.Withtheadvancementsindeeplearningandimageprocessingtechniques,convolutionalneuralnetwork(CNN)basedmodelshavedemonstratedremarkableperformanceinfacialexpressionrecognition.However,theperformanceofsingleCNNmodelscanbegreatlyaffectedbyvariationsindataset,illuminationconditions,andposeangles.Toovercometheselimitations,thispaperproposesafacialexpressionrecognitionmethodbasedontheensembleofconvolutionalneuralnetworks.Specifically,weapplyanensemblelearningtechniquetocombinethepredictionsofmultipleCNNmodels,therebyimprovingtheoverallaccuracyandrobustnessofthefacialexpressionrecognitionsystem.Experimentalresultsonbenchmarkdatasetsdemonstratetheeffectivenessandsuperiorityofourproposedapproachcomparedtostate-of-the-arttechniques. 1.Introduction Facialexpressionsarecrucialforhumancommunication,conveyingemotionsandintentions.Accuraterecognitionoffacialexpressionsenablesmachinestobetterunderstandandinteractwithhumanusers.Inrecentyears,deeplearningapproaches,particularlyCNNs,haverevolutionizedthefieldoffacialexpressionrecognitionduetotheirabilitytoautomaticallylearnrelevantfeaturesfromrawimagedata.However,singleCNNmodelsmaystrugglewithvariationsinlightingconditions,facialorientations,anddatasetbiases.Therefore,anensemblelearningapproachisproposedinthispapertoimprovetherobustnessandgeneralizationoffacialexpressionrecognitionsystems. 2.RelatedWork Thissectionprovidesanoverviewofexistingfacialexpressionrecognitiontechniques,includingtraditionalmethodsandrecentdeeplearningapproaches.IthighlightsthelimitationsofsingleCNNmodelsandpresentstherationaleforensemblelearning. 3.Methodology 3.1DatasetPreprocessing Thefirststepinourmethodinvolvespreprocessingthefacialexpressiondataset.Thisincludesfacedetection,facealignment,andnormalizationtechniquestoensureco