预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课题:§2.2.2对数函数(二) 教学任务:(1)进一步理解对数函数的图象和性质; (2)熟练应用对数函数的图象和性质,解决一些综合问题; (3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 教学重点:对数函数的图象和性质. 教学难点:对对数函数的性质的综合运用. 教学过程: 回顾与总结 eq\o\ac(○,1) 函数的图象如图所示,回答下列问题. eq\o\ac(○,2) (1)说明哪个函数对应于哪个图象,并解释为什么? eq\o\ac(○,3) (2)函数与 且有什么关系?图象之间 又有什么特殊的关系? (3)以的图象为基础,在同一坐标系中画出的图象. 1 2 3 4 (4)已知函数的图象,则底数之间的关系: . 教 完成下表(对数函数且的图象和性质) 图 象定义域 值域 性 质 根据对数函数的图象和性质填空. eq\o\ac(○,1)已知函数,则当时,;当时,;当时,;当时,. eq\o\ac(○,1)已知函数,则当时,;当时,;当时,;当时,;当时,. 应用举例 比较大小:eq\o\ac(○,1),且; eq\o\ac(○,2),. 解:(略) 例2.已知恒为正数,求的取值范围. 解:(略) [总结点评]:(由学生独立思考,师生共同归纳概括). . 例3.求函数的定义域及值域. 解:(略) 注意:函数值域的求法. 例4.(1)函数在[2,4]上的最大值比最小值大1,求的值; (2)求函数的最小值. 解:(略) 注意:利用函数单调性求函数最值的方法,复合函数最值的求法. 例5.(2003年上海高考题)已知函数,求函数的定义域,并讨论它的奇偶性和单调性. 解:(略) 注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤. 例6.求函数的单调区间. 解:(略) 注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数的单调区间. 作业布置 考试卷一套