预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

潮州市2012-2013学年度第一学期期末高二级教学质量检测卷 数学(理科) 本试卷分选择题和非选择题两部分,,满分150分,考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上。 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;答案不能答在试卷上。 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4.考生必须保持答题卡的整洁,考试结束,将答题卡交回。 一、选择题(本大题共8小题,每小题5分,共40分) 1、不在<6表示的平面区域内的一个点是 A.(0,0) B.(1,1) C.(0,2) D.(2,0) 2、已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为 A.B.2C.2D.4 3、设命题甲:的解集是实数集;命题乙:,则命题甲是命题乙成立的 A.充分不必要条件B.充要条件 C.必要不充分条件D.既非充分又非必要条件 4、与圆及圆都外切的动圆的圆心在 A.一个圆上B.一个椭圆上 C.双曲线的一支上D.一条抛物线上 5、已知为等比数列,是它的前项和。若,且与2的等差中项为, 则等于 A.31B.32C.33D.34 6、如图,在平行六面体中,底面是边长为2的正 方形,若,且,则的长为 A. B. C. D. 7、设抛物线的焦点为F,准线为,P为抛物线上一点,PA⊥,A为垂足.如果直线AF的斜率为,那么|PF|等于 A.B.8C.D.4 8、已知、是椭圆的两个焦点,若椭圆上存在点P使,则 A.B.C.D. 二、填空题(本大题共6小题,每小题5分,共30分) 9、命题“若,则且”的逆否命题是. 10、若方程表示椭圆,则实数的取值范围是____________________. 11、某学习小组进行课外研究性学习,为了测量不能 到达的A、B两地,他们测得C、D两地的直线 距离为,并用仪器测得相关角度大小如图所 示,则A、B两地的距离大约等于 (提供数据:,结果保留两个有效数字) 12、设等差数列的前项和为,若则. 13、已知点P及抛物线,Q是抛物线上的动点,则的最小值为. 14、关于双曲线,有以下说法:①实轴长为6;②双曲线的离心率是; ③焦点坐标为;④渐近线方程是,⑤焦点到渐近线的距离等于3. 正确的说法是.(把所有正确的说法序号都填上) 三、解答题(本大题共6小题,共80分,解答要写出证明过程或解题步骤) 15、(本小题满分12分) 已知且,命题P:函数在区间上为减函数; 命题Q:曲线与轴相交于不同的两点.若“”为真, “”为假,求实数的取值范围. 16、(本小题满分12分) 在中,分别是角的对边,且 82615980 (1)求的面积;(2)若,求角. 17、(本小题满分l4分) 广东省某家电企业根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产空调机、彩电、冰箱共120台,且冰箱至少生产20台,已知生产这些家电产品每台所需工时和每台产值如下表: 家电名称空调机彩电冰箱工时产值/千元432问每周应生产空调机、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位) 18、(本小题满分14分) 如右下图,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段 AB、BC上的点,且EB=FB=1. (1)求二面角C—DE—C1的余弦值; (2)求直线EC1与FD1所成的余弦值. 19、(本小题满分14分) 已知数列满足 (1)求数列的通项公式; (2)证明: 20、(本小题满分14分) 已知椭圆C的中心在原点,焦点在轴上,焦距为,且过点M。 (1)求椭圆C的方程; (2)若过点的直线交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。 潮州市2012-2013学年度第一学期期末高二级教学质量检测卷 数学(理科)参考答案 一、选择题 题号12345678答案DACCAABB 二、填空题 9、若或,则10、 11、12、1 13、14、②④⑤ 解答提示: 1、代入检验可得; 2、又AB=1,BC=4, ; 3、命题甲:的解集是实数集,则可得 4、由已知得 5、由已知可得: 6、由已知可得点 用空间向量解会更好 7、由已知得焦点为F(2,0),准线为又直线AF的斜率为, 说明:由AF的斜率为先求出代入得 8