预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

圆的有关概念及性质 【基础知识回顾】 圆的定义及性质: 圆的定义: ⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 2、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴 ⑵中心对称性:圆是中心对称图形,对称中心是 【提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径;3、圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】 垂径定理及推论: 1、垂径定理:垂直于弦的直径,并且平分弦所对的。 2、推论:平分弦()的直径,并且平分弦所对的。 【提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。3、垂径定理常用作计算,在半径r、弦a、弦心d和弓高h中已知其中两个量可求另外两个量.】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别 【提醒:注意:该定理的前提条件是“在同圆或等圆中”】 圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是 【提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角 有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的辅助线】 圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。 性质:圆内接四边形的对角. 【重点考点例析】 考点一:垂径定理 例1(2015•舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为() A.2B.8 C.2D.2 对应训练 1.(2015•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为() A.4B.5 C.4 D.3 考点二:圆周角定理 例2(2015•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为() A.3 B.4 C.5 D.8 对应训练 2.(2015•珠海)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为() A.36° B.46° C.27° D.63° 7.(2015•威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积. 练习: 1.(2015•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80° . 2.(2015•盐城)如图,将⊙O沿弦AB折叠,使经过圆心O,则∠OAB=30° . 3.(2015•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为. 4.(2015•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48 度. 5.(2015•广州)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2) . 三、解答题 1(2016·山东潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证: (1)四边形EBFD是矩形; (2)DG=BE. 2、(2015•浙江省台州市,第22题)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC (1)若∠CBD=39°,求∠BAD的度数 (2)求证:∠1=∠2 3、是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O上. (1)若,求的度数; E B D C A O (