预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-22- 四川省成都市新津中学2015届高三上学期入学数学试卷(理科) 一、选择题:本大题共12小题,每小题5分,共50分. 1.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.(5分)若集合M={y|y=2x,x∈R},集合S={x|y=lg(x﹣1)},则下列各式中正确的是() A. M∪S=M B. M∪S=S C. M=S D. M∩S=∅ 3.(5分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则() A. 命题p∨q是假命题 B. 命题p∧q是真命题 C. 命题p∨(¬q)是假命题 D. 命题p∧(¬q)是真命题 4.(5分)若抛物线y2=2px的焦点与双曲线﹣=1的右焦点重合,则p的值为() A. ﹣2 B. 2 C. ﹣4 D. 4 5.(5分)某程序框图如图所示,该程序运行后输出的S的值是() A. ﹣3 B. ﹣ C. D. 2 6.(5分)在复平面内,复数z和表示的点关于虚轴对称,则复数z=() A. i B. i C. ﹣i D. ﹣i 7.(5分)已知直线a和平面α,则能推出a∥α的是() A. 存在一条直线b,a∥b,且b∥α B. 存在一条直线b,a⊥b,且b⊥α C. 存在一个平面β,a⊂β,且α∥β D. 存在一个平面β,a∥β,且α∥β 8.(5分)(2x4﹣)10的展开式中的常数项为() A. 170 B. 180 C. 190 D. 200 9.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是() A. f(x)=x3 B. f(x)=3x C. f(x)=x D. f(x)=()x 10.(5分)已知有一个公园的形状如图所示,现有3种不同的植物药种在此公园的A,B,C,D,E这五个区域内,要求有公共边的两块相邻区域不同的植物,则不同的种法共有() A. 16种 B. 18种 C. 20种 D. 22种 11.函数的图象大致为() A. B. C. D. 12.(5分)已知函数f(x)=aln(x+1)﹣x2,在区间(0,1)内任取两个实数p,q,且p≠q,若不等式>1恒成立,则实数a的取值范围为() A. [11,+∞) B. [13,+∞) C. [15,+∞) D. [17,+∞) 二、填空题:本大题共8小题,每小题5分,共25分.把答案填在题中横线上. 13.(5分)展开式中只有第六项的二项式系数最大,则展开式中的常数项等于. 14.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为. 15.(5分)设变量x、y满足约束条件,则目标函数z=3x﹣y的最大值为. 16.(5分)若(1﹣2x)2011=a0+a1x+a2x2+…+a2010x2010+a2011x2011(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)=.(用数字作答) 17.函数y=的定义域为. 18.(5分)(理科)设随机变量X的分布列P(X=k)=mk(k=1,2,3,4,5),则实数m=. 19.设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=. 20.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=. 三、解答题:本大题共7小题,满分75分.其中16-19每题12分,20题13分,21题14分. 21.(12分)某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图所示茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数; (2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率; (3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望. 22.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图: (Ⅰ)求频率分布直方图中a的值; (Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数; (Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率. 23.(12分)已知函数f(x)=sin[ωπ(x+)]的部分图象如图,其中P为函数图象的最高点,PC⊥x轴,且tan∠APC=1. (1)求函数f(x)的解析式; (2)若x∈[1,2