预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为() A. B. C. D. 2.已知,,…,均为正数,且满足,,则,的大小关系是() A. B. C. D. 3.定义一种新运算“*”,即,例如.则的值为() A.12 B.24 C.27 D.30 4.数轴上表示1,的对应点分別为A,B,点B关于点A的对称点为C,则点C所表示的数是() A. B. C. D. 5.已知,为两个连续的整数,且,则的值等于() A. B. C. D. 6.有下列四种说法: ①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是() A.1 B.2 C.3 D.4 7.设n为正整数,且n<<n+1,则n的值为() A.5 B.6 C.7 D.8 8.按如图所示的运算程序,能使输出y值为1的是() A. B. C. D. 9.已知(取的末位数字),(取的末位数字),(取的末位数字),…,则的值为() A.4036 B.4038 C.4042 D.4044 10.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?() A.在A的左边 B.介于O、B之间 C.介于C、O之间 D.介于A、C之间 二、填空题 11.已知的小数部分是,的小数部分是,则________. 12.阅读下列解题过程: 计算: 解:设① 则② 由②-①得, 运用所学到的方法计算:______________. 13.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上). 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,.按此方案,第6棵树种植点为________;第2011棵树种植点________. 15.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____. 16.对于正整数n,定义其中表示n的首位数字、末位数字的平方和.例如:,.规定,.例如:,.按此定义_____. 17.如图所示,数轴上点A表示的数是-1,0是原点以AO为边作正方形AOBC,以A为圆心、AB线段长为半径画半圆交数轴于两点,则点表示的数是___________,点表示的数是___________. 18.将1,,,按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,如(5,4)表示的数是(即第5排从左向右第4个数),那么(2021,1011)所表示的数是___. 19.若.则=______. 20.将1,,,按如图方式排列.若规定,表示第排从左向右第个数,则所表示的数是___________. 三、解答题 21.阅读材料,回答问题: (1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________. (2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元 ①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元; ②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)? 22.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=. (1)F(