预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数是初中数与代数的主线 函数是中学数学里第一个正式研究“变化”过程的内容,是研究运动变化的重要数学模型。《新标准》对函数内容具体地的学习要求如下:探索简单实例中的数量关系和变化规律,了解常量、变量的意义。结合实例,了解函数的概念和三种表示法,能举出函数的实例。能结合图像对简单实际问题中的函数关系进行分析。能确定简单实际问题中函数自变量的取值范围,并会求出函数值。能用适当的函数表示法刻画简单实际问题中变量之间的关系。结合对函数关系的分析,能对变量的变换情况进行出不讨论。 (一)初中的函数内容 1.常量。变量。函数及其表示法。用函数解决实际问题。 2.一次函数。一次函数的图象和性质。用一次函数解决实际问题。二元一次方程组的图象解法。 3.反比例函数。反比例函数的图象和性质。用反比例函数解决实际问题。 4.二次函数。二次函数的图象和性质。用二次函数解决实际问题。二元一次方程的图象解法。 (二)解析初中函数 (1)初中函数概念建立了数学与运动变化的现实世界的联系 在现实世界中,运动与变化是绝对的,静止与不变则是相对的。在这种运动和变化中就包含(两个)相互依赖的量的变化。那么,从数学角度出发如何描述这两个变化量的关系呢?人们对这种变化对应的关系进行了长期的研究,最后引入“函数”这个数学概念来描述这个关系。函数概念有不同的定义,为了便于学生接受,初中函数概念一般采取如下定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。 在很多问题中,可以用式子表示函数。初中所学的一次函数,反比例函数,二次函数都有各自的解析表达式。在一些用图或表格表达的问题中,也能看到两个变量间的函数关系。初中函数概念的建立有助于学生从运动变化,联系对应的角度考虑问题。 (2)初中函数概念蕴涵了数与形的联系 从初中函数概念可以看到:自变量的一个值和与它对应的函数值组成了一个有序数对,而一个有序数对可以用平面直角坐标系的一个点表示。所有这些有序数对对应的点组成一个图形,也就是函数的图象。函数的图象是两个变量对应关系的直观反映,建立了数与形的联系。函数图象特征与函数性质之间存在必然的联系。例如 图象特征函数变化规律从左到右图象上升y随x的增大而增大从左到右图象下降y随x的增大而减小图象有最高点(a,b)x=a时,y有最大值b图象有最低点(a,b)x=a时,有最小值b可以利用函数图象的直观研究函数的性质。在初中,一次函数,反比例函数,二次函数的性质都可以借助各自的图象加以研究。比如,从图象理解一次函数,反比例函数的单调性,认识二次函数的最大值或最小值。 (3)初中函数概念包含了与数,式,方程等内容的联系 从函数概念可以看到它与已学内容的一些联系:由自变量的值求函数的值涉及数及其运算;用含自变量的式子表示另一个变量涉及列代数式;由函数的值求自变量的值,实际上是解方程;自变量的取值范围的讨论,要用到不等式等等。 函数概念可以加深对方程(组)与不等式等数学对象的理解,而且可以加大对已经学过的相关内容之间的联系的认识,加强知识间横纵向的融会贯通,提高灵活地分析解决问题的能力。