预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.定义一种新运算“*”,即,例如.则的值为() A.12 B.24 C.27 D.30 2.下列命题是真命题的有()个 ①两个无理数的和可能是无理数; ②两条直线被第三条直线所截,同位角相等; ③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A.2 B.3 C.4 D.5 3.数轴上A,B,C,D四点中,两点之间的距离最接近于的是() A.点C和点D B.点B和点C C.点A和点C D.点A和点B 4.如图,在数轴上表示的对应点分别为,点关于点的对称点为,则点表示的数为() A. B. C. D. 5.已知n是正整数,并且n-1<<n,则n的值为() A.7 B.8 C.9 D.10 6.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④的平方根是,其中正确的个数有() A.0个 B.1个 C.2个 D.3个 7.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为() A.﹣40 B.﹣32 C.18 D.10 8.如图,数轴上两点表示的数分别为,点B关于点A的对称点为点C,则点C所表示的数是() A. B. C. D. 9.任何一个正整数n都可以进行这样的分解:n=p×q(p,q都是正整数,且p≤q),如果p×q在n的所有分解中两个因数之差的绝对值最小,我们就称p×q是n的黄金分解,并规定:F(n)=,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=,现给出下列关于F(n)的说法:①F(2)=;②F(24)=;③F(27)=3;④若n是一个完全平方数,则F(n)=1,其中说法正确的个数有() A.1个 B.2个 C.3个 D.4个 10.如图,数轴上O、A、B、C四点,若数轴上有一点M,点M所表示的数为,且,则关于M点的位置,下列叙述正确的是() A.在A点左侧 B.在线段AC上 C.在线段OC上 D.在线段OB上 二、填空题 11.阅读下列解题过程: 计算: 解:设① 则② 由②-①得, 运用所学到的方法计算:______________. 12.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上). 13.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,.按此方案,第6棵树种植点为________;第2011棵树种植点________. 15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 16.如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是__________. 17.如图所示,数轴上点A表示的数是-1,0是原点以AO为边作正方形AOBC,以A为圆心、AB线段长为半径画半圆交数轴于两点,则点表示的数是___________,点表示的数是___________. 18.将1,,,按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,如(5,4)表示的数是(即第5排从左向右第4个数),那么(2021,1011)所表示的数是___. 19.已知,则的值是__________; 20.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是_____.若点B表示,则点B在点A的______边(填“左”或“右”). 三、解答题 21.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”. (1)分别判断数组和是否为“蹦蹦数组”; (2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请