预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一章直角三角形的边角关系 §1.1从梯子的倾斜程度谈起 第一课时刘小鹏 教学目标 (一)教学知识点 1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系. 2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. (二)能力训练要求 1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点. 2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力. 3.体会解决问题的策略的多样性,发展实践能力和创新精神. (三)情感与价值观要求 1.积极参与数学活动,对数学产生好奇心和求知欲. 2.形成实事求是的态度以及独立思考的习惯. 教学重点 1.从现实情境中探索直角三角形的边角关系. 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 教学难点 理解正切的意义,并用它来表示两边的比. 教学方法 探索法. 教具准备 PPT演示 教学过程 1.创设问题情境,引入新课 用PPT课件动画演示本章的章头图,提出问题 [问题]随着改革开放的深入,建设正日新月异地发展,幢幢大楼拔地而起.你能应用数学知识和适当的途径得到大厦的实际高度吗? 通过本章的学习,相信大家一定能够解决. 这节课,我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起). 2.自主探究,合作交流 用多媒体演示如下内容: [师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示) (1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法? [生]梯子AB比梯子EF更陡. [师追问]你是如何判断的? [生]从图中很容易发现∠ABC>∠EFD,所以梯子AB比梯子EF陡. [生可能回答]我觉得是因为AC=ED,所以只要比较BC、FD的长度即可知哪个梯子陡.BC<FD,所以梯子AB比梯子EF陡. [师]我们再来看一个问题(用多媒体演示) (2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的? [生]先自主探究,再小组交流意见 [师提示]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢? [生可能回答]在第(1)问的图形中梯子的垂直高度即AC和ED是相等的,而水平宽度BC和FD不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡. [生计算] [师]多媒体演示:想一想 如图,小明想通过测量B1C1:及AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗? (1)直角三角形AB1C1和直角三角形AB2C2有什么关系? (2)和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论? [师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法. [生]独思,独做 [生]小组评议 [生]全班交流 (在上图中,我们可以知道Rt△AB1C1,和Rt△AB2C2是相似的.因为∠B2C2A=∠B1C1A=90°,∠B2AC2=∠B1AC1,根据相似的条件,得Rt△AB1C1∽Rt△AB2C2. 由图还可知:B2C2⊥AC2,B1C1⊥AC1,得B2C2//B1C1,Rt△AB1C1∽Rt△AB2C2. 相似三角形的对应边成比例,得 . 如果改变B2在梯子上的位置,总可以得到Rt△B2C2A∽Rt△Rt△B1C1A,仍能得到因此,无论B2在梯子的什么位置(除A外),总成立.) (∠A的对边与邻边的比只与∠A的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.) 3.得出结论。 由于直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示) 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边之比便随之确定,这个比叫做∠A的正切(tangent),记作tanA,即tanA=. 展示几个判断题,学生口答。 思考:我们在正切中应该注意哪些问题? ①tanA是在直角三角形中定义的,∠A是一个锐角(注意数形结合,构造直角三角形)②tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”; ③tanA是一个比值(直角边之比,注意比的顺序:对比邻;且tanA﹥0,无单位;④tanA的大小只