预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.2.1《直接证明与间接证明-综合法和分析法》教学目标2.2直接证明与间接证明演绎推理是证明数学结论、建立数学体系的重要思维过程.例1:已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法例2:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形.例3:设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴(如图),证明直线AC经过原点O.剖析:证直线AC经过原点O,即证O、A、C三点共线,为此只需证kOC=kOA.本题也可结合图形特点,由抛物线的几何性质和平面几何知识去解决.10作业:P91A组2,32.2直接证明与间接证明一般地,利用已知条件和某些已经学过的定义、定理、公理等,经过一系列的推理、论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。 回顾基本不等式: (a>0,b>0)的证明.一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法. 例:设a,b,c为一个三角形的三 边,且s2=2ab, 试证s<2a.例2:如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证AF⊥SC证:例4.已知数列{an}的通项an>0,(n∈N*),它的前n项的和记为sn,数列{s2n}是首项为3,公差为1的等差数列.(1)求an与sn的解析式;(2)试比较sn与3nan(n∈N*),的大小.作业:P91B组3思考题:甲、乙、丙三箱共有小球384个,先由甲箱取出若干放进乙、丙两箱内,所放个数分别为乙、丙箱内原有个数,继而由乙箱取出若干个球放进甲、丙两箱内,最后由丙箱取出若干个球放进甲、乙两箱内,方法同前.结果三箱内的小球数恰好相等.求甲、乙、丙三箱原有小球数再见