预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

开放性问题 开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型. 题型之一条件开放型 例1(2014·巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF. (1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明. (2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由. 【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可; (2)由(1)中三角形的全等,易得四边形BFCE是平行四边形,然后根据矩形的判定方法,得出EH与BH应满足的条件. 【解答】(1)添加条件:答案不唯一,如:BE∥CF或EH=FH或∠EBH=∠FCH或∠BEH=∠CFH等. 选择EH=FH,证明如下: 证明:∵点H是边BC的中点,∴BH=CH. 在△BEH和△CFH中, ∴△BEH≌△CFH(SAS). (2)如图,当BH=EH时,四边形BFCE是矩形.理由如下: ∵BH=CH,EH=FH, ∴四边形BFCE是平行四边形. 又∵BH=EH,∴EF=BC. ∴四边形BFCE是矩形. 方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己. 1.(2014·湘潭)如图,直线a、b被直线c所截,若满足,则a、b平行. 2.(2014·内江)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线). 3.(2013·六盘水)如图,添加一个条件:,使△ADE∽△ACB.(写出一个即可) 4.(2014·娄底)先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值. 5.(2013·邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,请添加一个条件,使得四边形ABCD为矩形,并说明理由. 题型之二结论开放型 例2(2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求: (Ⅰ)新数据都在60~100(含60和100)之间; (Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大. (1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求; (2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 【思路点拨】(1)要验证y=x+(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100; (2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出. 【解答】(1)当p=时,y=x+(100-x).即y=x+50. ∴y随着x的增大而增大, 即p=时,满足条件(Ⅱ); 又当20≤x≤100时,×20+50≤y≤×100+50.即60≤y≤100.即满足条件(Ⅰ). 综上可知,当p=时,这种变换满足要求. (2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k. ∵a>0,∴当20≤x≤100时,y随着x的增大而增大, 令x=20,y=60,得k=60. 令x=100,y=100,得a×802+k=100.则a=. ∴y=(x-20)2+60. 方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,