预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

在前面的课程中,我们已经了解了假设检验的基本思想,并讨论了当总体分布为正态时,关于其中未知参数的假设检验问题.例如,从1500到1931年的432年间,每年爆发战争的次数可以看作一个随机变量,椐统计,这432年间共爆发了299次战争,具体数据如下:在概率论中,大家对泊松分布产生的一般条件已有所了解,容易想到,每年爆发战争的次数,可以用一个泊松随机变量来近似描述.也就是说,我们可以假设每年爆发战争次数分布X近似泊松分布.又如,某钟表厂对生产的钟进行精确性检查,抽取100个钟作试验,拨准后隔24小时以后进行检查,将每个钟的误差(快或慢)按秒记录下来.再如,某工厂制造一批骰子,声称它是均匀的.K.皮尔逊检验法是在总体X的分布未知时, 根据来自总体的样本,检验关于总体分布的假设的一种检验方法.H0:总体X的分布函数为F(x)在用检验假设H0时,若在H0下分布类型已知,但其参数未知,这时需要先用极大似然估计法估计参数,然后作检验.3.根据所假设的理论分布,可以算出总体X的值落入每个Ai的概率pi,于是npi就是落入Ai的样本值的理论频数.标志着经验分布与理论分布之间的差异的大小.皮尔逊证明了如下定理:为了便于理解,我们对定理作一点直观的说明.是k个近似正态的变量的平方和.在F(x)尚未完全给定的情况下,每个未知参数用相应的估计量代替,就相当于增加一个制约条件,因此,自由度也随之减少一个.如果根据所给的样本值X1,X2,…,Xn算得统计量的实测值落入拒绝域,则拒绝原假设,否则就认为差异不显著而接受原假设.皮尔逊定理是在n无限增大时推导出来的,因而在使用时要注意n要足够大,以及npi不太小这两个条件.让我们回到开始的一个例子,检验每年爆发战争次数分布是否服从泊松分布.因H0所假设的理论分布中有一个未知参数,故自由度为4-1-1=2.故认为每年发生战争的次数X服从参数为0.69的泊松分布.奥地利生物学家孟德尔进行了长达八年之久的豌豆杂交试验,并根据试验结果,运用他的数理知识,发现了遗传的基本规律.子二代由于随机性,观察结果与3:1总有些差距,因此有必要去考察某一大小的差异是否已构成否定3:1理论的充分根据,这就是如下的检验问题.由于统计量这些试验及其它一些试验,都显示孟德尔的3:1理论与实际是符合的.这本身就是统计方法在科学中的一项重要应用.教材上的另一例留给同学们自己看.由于这种检验的计算量相对较大,一般要用统计软件包来实现.