预览加载中,请您耐心等待几秒...
1/1

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

巧解钟表上的角度问题 让我们重新认识一下时钟:时钟的表面被均分成12大格、60小格,若把钟表表面看成以表心为顶点的周角,则每一大格对应的角度为30°,每一小格为6°,也就是说,分针每分钟转过6°的角,时针每分钟转过×30°=°的角,即每分钟分针总比时针多转°.有了上述知识,我们再来求有关钟表的问题,就不会感到困难了. 分针转的角度为:分钟数×6°; 时针转的角度为:小时数×30°+分钟数×°. 例1.试问时钟的分针与时针一昼夜重合多少次 解析:你可能直觉认为,分针每小时转一圈,每转一圈就要与时针重合一次,一昼夜有24小时,分针与时针岂不是要重合24次吗 乍听起来这个说法颇有道理,但还是让我们计算后再下结论吧! 设分针与时针从上一次重合到下一次重合用时x分钟,易知其间分针比时针多转了360°,于是有 6x-=360,解得x=(分). 一昼夜分针与时针重合的次数为:24×60÷=22(次). 怎么样,还相信你的直觉吗 例2.某人晚上6时后外出时,钟表上时针与分针的夹角时110°,晚上7时前回来时,钟表的时针与分针的夹角仍为110°,求此人外出了多长时间 解析:易知,6时后时针与分针首次呈110°角时,分针落后时针110°角,第二次呈110°角时,分针超过时针110°,即其间分针比时针多走了2×110°,设完成此过程共经过了x分钟,则有 6x-=2×110,解得x=40(分). 即此人外出了40分钟.