东华大学几何与多元微积分A(下)复习题.doc
ys****39
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
东华大学几何与多元微积分A(下)复习题.doc
几何与多元微积分A(下)复习题07级填空题(每小题4分,共28分):1、设函数由方程所确定,则。2、函数的驻点是。3、根据二重积分的几何意义,其中。4、。5、柱面以平面上的线段为准线,母线平行于轴,则介于平面及曲面之间的部分的面积可用曲线积分表示为。6、设有连续导数,是单连通域上任意简单闭曲线,且。则。7、设是面上的闭区域的上侧,则。试解下列各题(每小题7分,共28分):1、求曲面在点处的切平面和法线方程。2、计算二重积分,其中是由直线及所围成的闭区域。3、利用球面坐标计算积分,为球体。、计算积分,其中是
东华大学-几何与多元微积分(下)期末试题(09-10).pdf
东华大学几何与多元微积分上复习06级08级.docx
06级一、填空题(5分SKIPIF1<08):1、当且仅当时,p级数SKIPIF1<0收敛。2、幂级数SKIPIF1<0在SKIPIF1<0内的和函数是。3、设SKIPIF1<0,则SKIPIF1<0。4、SKIPIF1<0。5、设SKIPIF1<0,则SKIPIF1<0。6、两平行平面Ax+By+Cz+D1=0与Ax+By+Cz+D2=0之间的距离为。7、两个球面的交线SKIPIF1<0在xOy面上的投影曲线方程为。8、SKIPIF1<0
东华大学几何与多元微积分(上)复习 06级-08级.doc
06级一、填空题(5分8):1、当且仅当时,p级数收敛。2、幂级数在内的和函数是。3、设,则。4、。5、设,则。6、两平行平面Ax+By+Cz+D1=0与Ax+By+Cz+D2=0之间的距离为。7、两个球面的交线在xOy面上的投影曲线方程为。8、的Fourier级数在时收敛于;时收敛于;时收敛于。二、试解下列各题(6分4):已知两点和,计算向量的模、方向余弦和方向角。设f是C(2)类函数,,求。求级数的和。将函数展开成x的幂级数,并指出展开式成立的区间。三、(8分)判别级数是否收敛?若收敛,是条件收敛还是
几何与多元微积分(下).doc
几何与多元微积分(下)填空:(5×5=25分)1、,其中D为由曲线围成的平面区域。2、,其中C为空间曲线。3、,其中C为由点组成的三角形△OAB的正向边界。4、交换下列积分的次序:。5、,其中的外法向量,的夹角。计算下列各题(8×6=48分)1、。2、其中Ω为由曲面与围成的立体区域。3、其中Σ为曲面。4、。5、,其中L为曲线由的一段。6、,其中Σ为有向曲面的上侧。有质量的曲面Σ:,其面密度为,计算曲面的质量;(2)曲面的重心;(3)曲面关于Z轴的转动惯量。(12分)四、(8分)设有连续的二阶偏导数,且满足