预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章离散型随机变量 一、教学目的与要求 1、掌握随机变量的概念,离散型随机变量的分布列,会用Ch1求事件概率的方法,求随机变量的分布列; 2、熟悉随机变量的数学期望,方差的概念,会应用分布列求数学期望、方差;掌握数学期望,方差的性质; 3、掌握二维随机变量的分布,边际分布的概念,会应用联合分布列求边际分布,会计算二维随机变量的数字特征,会判定随机变量的独立性与相关性。 4、掌握随机变量函数分布的求法,会求随机变量函数的数字特征。 二、教学重点与难点 重点是分布列的求法,期望与方差的计算。 难点是二维随机变量联合分布列的求法,期望与方差性质的应用。 第二章离散型随机变量 §2.1一维随机变量及分布列 一.随机变量及其分类 1.概念 在Ch1里,我们研究了随机事件及其概率,细心的同学可能会注意到在某些例子中,随机事件与实数之间存在某种客观的联系。例如袋中有五个球(三白两黑)从中任取三球,则取到的黑球数可能为0,1,2本身就是数量且随着随机试验结果的变化而变化的。又如在“n重贝努里试验中,事件A出现k次”这一事件的概率,若记ξ=n重贝努里试验中A出现的次数,则上述“n重贝努里试验中,事件A出现k次”这一事件可以简记为(ξ=k),从而有 P(ξ=k)=Cpqq=1-p 并且ξ的所有可能取值就是事件A可能出现的次数0,1,2,……n,有些初看起来与数值无关的随机现象,也常常能联系数值来描述。 例如抛掷一枚均匀的硬币可能出现正面,也可能出现反面,约定 若试验结果出现正面,令η=1,从而{试验结果出现正面}=(η=1); 若试验结果出现反面,令η=0,从而{试验结果出现反面}=(η=0)。 为了计算n次投掷中出现正面数就只需计算其中“1”出现的次数了。 一般地,若A为某个随机事件,则一定可以通过如下示性函数使它与数值发生联系 在上面的例子中,我们遇到了两个随机变量ξ,η,这两个变量取什么值,在每次试验之前是不确定的,因为它的取值依赖于试验的结果,也就是说它的取值是随机的,通常称这种量为随机变量。从上面例子可以发现,有了随机变量,至少使随机事件的表达在形式上简洁得多了。 在上述前两个例子中,对每一个随机试验的结果自然地对应着一个实数,而在后两个例子中,这种对应关系是人为地建立起来,由此可见,无论哪一种性质,所谓随机变量,不过是随机试验的结果(即样本点)和实数之间的一一对应关系。这与数学分析中函数的概念本质上是一致的。只不过在函数概念中,f(x)的自变量x为实数,而随机变量的概念中,随机变量ξ(ω)的自变量为样本点ω,因为对每个试验结果ω都有函数ξ(ω)与之对应,所以ξ(ω)的定义域是样本空间,值域是实数域。 定义1:设随机试验的每一个可能的结果(样本点)ω唯一地对应一个实数,则称实变量为随机变量,通常用希腊字母或大写字母X,Y,Z等表示随机变量, 例1:一射手对一射击目标连续射击,则他命中目标的次数为随机变量,的可能取值为0,1,2…… 例2:某一公交车站每隔5分钟有一辆汽车停靠,一位乘客不知道汽车到达的时间,则侯车时间为随机变量,的可能取值为。 例3:考察某一地区全年的温度的变化情况,则某一地区的温度为随机变量,的可能取值为。 例4:大炮对某一目标射击,弹着点的位置,如果建立如图所示的坐标系,则弹着点就可以用一个二维坐标()表示出来,这时,就要用二维随机变量来描述。 2.随机变量的分类 从随机变量的取值情况来看,若随机变量的可能取值只要有限个或可列个则该随机变量为离散型随机变量,不是离散型随机变量统称为非离散型随机变量,若随机变量的取值是连续的,称为连续型随机变量,它是非离散型随机变量的特殊情形。 从随机变量的个数来分,随机变量可分为一维随机变量和多维随机变量, 二、一维随机变量及分布列 1.定义 定义2:定义在样本空间上,取值于实数域R,且只取有限个或可列个值的变量称为一维(实值)离散型随机变量,简称离散型随机变量。 讨论离散型随机变量主要要搞清楚两个方面:一是随机变量的所有可能取值;更主要的的是搞清楚随机变量取这些可能值的概率。 例5:设袋中有五个球(3个白球2个黑球)从中任取两球,则取到的黑球数为随机变量,的可能取值为0,1,2。 = = = 习惯上,把它们写成 或 0122、分布律 如果离散型随机变可能取值为() 相应的取值的概率称 为随机变量的分布列,也称为分布律,简称分布。 也可以用下列表格或矩阵的形式来表示,称为随机变量的分布律: 例6:在n=5的贝努里试验中,设随机事件A在一次试验中出现的概率p,令=5次试验中事件A出现的次数。 则k=0,1,2,3,4,5 于是的分布列为 012345 3、分布列的性质 由概率的性质可知,任一离散型随机变量的分布列都具有下述性质: 非负性:1)…. 规范