预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共44页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章晶格振动Ⅱ—热学性质§4.1固体的热容平均热容是比较粗略的,(T2-T1)的范围愈大,精度愈差,应用时要特别注意适用的温度范围。物体的热容还与它的热过程有关,假如加热过程是恒压条件下进行的,所测定的热容称为恒压热容,常用字母CP表示。假如加热过程保持物体容积不变,所测定的热容称为恒容热容。常用字母CV表示。即 (4.1-3) (4.1-4) 式中:Q为热量,为固体的平均内能,H为焓。 由于恒压加热过程中,物体除温度升高外,还要对外界做功,所以温度每提高1K需要吸收更多的热量,即CP>CV。CP的测定比较简单,但CV更有理论意义,因为它可以直接从系统的能量增量计算。根据热力学第二定律可以导出CP和CV的关系,即 (4.1-5) 式中是体膨胀系数,K-1;是压缩系数,m2/N;是摩尔容积,m3/mol。 对于凝聚态物质的CP和CV的差异可以忽略,CP-CV的差值随温度的降低而减小。这是因为温度降低时其内能随温度的变化很小。在高温时,二者的差别就相当明显。§4.1.2固体的热容理论一、杜隆-珀替(Dulong-Petit)定律二、晶格热容的量子理论将式(4.1-12)对温度求微商就得到频率为的振子对晶格热容的贡献为 (4.1-13) 比较上式与式(4.1-8)可知,谐振子对热容的贡献与振动频率有关。 对于高温极限的情形,,即,将式(4.1-13)中的指数按的级数展开,得到 (4.1-14) 将上式与式(4.1-8)比较可知,在较高温度时,量子理论得到的结果与经典的杜隆-珀替定律一致。只是因为当振子能量远大于能量量子()时,量子化的效应可以忽略不计。对于低温极限的情形,,则,故式(4.1-13)化为 (4.1-15) 可以证明,当时,。也就是说,根据量子理论,晶格热容将随而趋于零。这是因为振动能量是量子化的,在时,振动被“冻结”在基态,很难被热激发,因而对热容的贡献趋于零。 对于由N个原子组成的晶体,由于每个原子有3个自由度,因此晶体有3N个正则频率,故晶体的平均能量为 (4.1-16)将式(4.1-16)对温度求微商就得到晶格的热容为 (4.1-17) 式(4.1-17)说明,只要知道晶格的各简正振动的频率,就可以求得晶格的热容。如果频率分布可以用一个积分函数来表示,就可以把式(4.1-16)和式(4.1-17)中的累加号变为积分号。设最大的角频率为,则有 (4.1-18) 式中表示角频率在w和w+dw之间的格波数。所以晶格的平均能量为 (4.1-19)对应的热容表达式应为 (4.1-20) 这样,就把求解晶格的热容问题从求晶格的各简正振动的频率转化为求角频率的分布函数。由于对于具体的晶体,的计算十分复杂,所以在一般讨论时,通常采用爱因斯坦(A.Einstein)模型和德拜(P.Debye)模型。 此外,将式(4.1-16)与式(3.2-81)比较可得温度为T时处在能量为的平均声子数为 (4.1-21) 从上式可以看出,当T=0K时,,这说明只有T>0时才有声子被激发;当温度很高时,, 所以,即在高温时,所激发的平均声子数与温度成正比,与频率成反比。1.爱因斯坦模型式中称为爱因斯坦比热函数;为爱因斯坦特征温度,,对于大多数固体材料,在100~300K范围内。式(4.1-23)称为爱因斯坦量子比热公式。经金刚石热容的实验值与爱因斯坦模型计算值的比较。可以看出,爱因斯坦模型取得了很大的成功。根据式(4.1-23)我们还可以讨论温度对热容的影响规律。 (1)当温度很高时,,则,此时 (4.1-24) 则(4.1-25) 此即经典的杜隆-珀替公式。也就是说,量子理论所导出的热容值如按爱因斯坦的简化模型计算,在高温时与经典公式一致,并和热容曲线符合得较好。 值一般在100K~300K范围。(2)在低温时,,则,式(4.1-23)可化为 (4.1-26) 上式表明:CV值在低温时随温度的变化规律,不是从实验中得出的按T3变化的规律。从上式可以看出,在低温区域,按爱因斯坦模型计算出的CV值与实验值相比下降太多。即随着温度的降低,爱因斯坦热容理论值比实验值要更快地下降而趋近于零。爱因斯坦热容理论在低温下不能很好地反映热容随温度的变化规律,这是由于爱因斯坦模型的基本假设存有不足。 一方面是爱因斯坦模型把每个原子当作独立的简谐振子,这与实际情况不符,因为在实际固体中,各原子的振动不是彼此独立地绕平衡点振动,而是原子振动间有相互联系,即存在耦合作用,在温度低时这种联系尤其显著;另一方面,从格波的角度来看,爱因斯坦模型实质上是忽略了各格波的频率差别,认为所有格波的频率相同。按照爱因斯坦特征温度的定义可以估算出爱因斯坦频率大约为1013Hz,相当于光频支频率。而实际上光学支的频率高于声学支的频率,爱因斯坦模型主要考虑了声子谱中的光学