预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7
在线预览结束,喜欢就下载吧,查找使用更方便
如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
建构良好的数学认知结构的教学策略
[作者:华南师范大学数学系何小亚本文为紫金杯全国数学创新教育论文评选一等奖]
摘要:良好的数学认知结构的特征是:有足够多的观念;具备稳定而又灵活的产生式;层次分明的概念网络结构;一定的问题解决策略的观念。建构良好的数学认知结构的教学策略包括:熟悉学生原有的数学认知结构;创设良好的问题情境;突出数学思想方法的教学;注意整体性教学。
关键词:数学认知结构;特征;教学策略;问题解决。
数学教学的本质是:学生在教师的引导下能动地建构数学认知结构,并使自己得到全面发展的过程。数学教学的根本任务就是要造就学生良好的数学认知结构,以满足后继的学习需要,最终提高学生的问题解决能力。那么,在数学教学中如何帮助学生建构良好的数学认知结构呢?这是值得广大的数学教师和教育研究人员去探讨的问题。在此,本文先指出良好的数学认知结构的四个特征,然后提出建构良好的数学认知结构的四条教学策略。
一、良好的数学认知结构的特征
数学认知结构是数学知识结构在学习者头脑里的反映,它是学习者在学习的过程中逐步积累起来的在数学方面的观念系统。这些观念可能包括三种类型:一是基本观念(言语信息或表象信息),它是学习者通过学习一些数学概念和数学命题之后形成的;二是数学具体方法的观念,它是学习者在运用基本观念来解决问题的过程中形成的;三是数学问题解决策略的观念。就一个具体的新知识的学习而言,根据美国教育心理学家奥苏贝尔的观点可知,良好的数学认知结构有三个特征:一是可利用性,即在学习者原有的数学认知结构中有适当的起同化作用的观念可以利用;二是可辨别性,即新知识与学习者原有的数学认知结构中的相关观念是可辨别的;三是稳定性,即同化新知识的原有的观念是清晰和稳定的。
从数学问题解决的角度来考察,良好的数学认知结构的特征包括以下四个方面:
1.足够多的观念
现代认知心理学关于“专家系统”的研究表明,在某个领域内善于解决问题的专家必须具备上万个知识组块,没有这些专门的知识,专家就不能解决该领域内的技术问题。在许多专门领域,如工程学、计算机程序、社会科学、阅读理解、物理、数学和医疗诊断等,将“专家”和“新手”作比较,都证明了解决问题的能力取决于个人所获得的有关知识的多少及其组织结构。根据笔者长期从事数学竞赛辅导工作的经验,绝大多数IMO选手,除了具备一定的数学天赋之外,他们必需系统接受过各种专题知识的训练。在各种专家的辅导下,他们的认知结构中积累了丰富的专门知识。例如,在IMO中的数论这一专题中,我们要求选手掌握的基本概念、原理达到五十余条。与新手相比,专家解决自己领域内的问题时较为出色,在不熟悉的领域,专家通常并不比新手好,因为他在那一领域内的观念不够多。和IMO选手相比,绝大部分数学博士导师就是一个“新手”,这就是为什么一个数学博士导师解不了IMO问题的原因。
2.具备稳定而又灵活的产生式
足够多的观念仅仅是问题解决的必要条件。也就是说,你头脑中的知识越多,并不意味着你解决问题的能力越强。甚至问题解决者已具备了解决某一问题所需的全部知识,但却解决不了这个问题。例如,有的问题解决者在解决一个问题时,百思而不得其解。但经旁人一指点,即刻恍然大悟。这说明他的认知结构中已具备了解决这个问题所必需的概念、性质和定理等知识。一些新教师经常向笔者“诉苦”,自己备课十分认真,课也讲得头头是道,学生对知识的提问反应也不错,可一到自己作业和考试就不行。也就是说,恍然大悟的问题解决者与不能独立作业(尤其是非模仿的作业)的学生,他们失败的原因不是缺乏所需的具体知识观念,而是缺乏与具体知识相对应的稳定的产生式。
文[1]指出:学习者在学习的过程中,其头脑里逐步贮存了一系列以“如果…,那么…”的形式表示的规则,这种规则称为产生式(Production);产生式是一种“条件→活动”规则,简记为C→A,只要条件信息一出现,活动就会自动产生。这里所说的活动不仅是外显的行为反应,还包括内隐的心理活动或心理运算。
例如,如果学生一识别出三角形ABC是直角三角形,他就能作出反应:斜边的平方等于两条直角边的平方之和,那么,我们就说该学生已习得了这个产生式。假如被试是在被主试问到什么是勾股定理的情形下复述出勾股定理,我们不能肯定被试已习得这个产生式,因为他可能仅仅是从长时记忆中检索出勾股定理的言语信息,并没有学会将其应用于实际情境。学生是否习得产生式,关键是看他在问题情境中识别出条件信息后能否作出活动。尚未习得勾股定理产生式的学生当然不能解决与勾股定理相关的问题,尽管他脑中贮存有勾股定理的言语观念。
“条件→活动”式的产生式对解决一些简单的由已知到结论的问题有效,但对一些复杂的问题则不然。因为,有许多产生式的条件信息是完全一样的,换句话说,由问题情境中的同一条件信息可以引发许多活动。这样,如果解决