预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

欧几里德的生平简介:毕竟时光已经流逝了2000多年,到现在为止,我们都无法知道欧几里德出生和去世的准确日子,也不知道他究竟是什么地方人。只大致了解他是希腊人,生活在埃及托勒密一世统治时期。欧几里德年青时,曾经在雅典的柏拉图学园求学,受到了十分良好的教育。在欧几里德之前,数学中的几何学是十分零散的,没有完整的体系,就如同一堆砖头、水泥、木材一样,而欧几里德经过总结和分析归纳,加上自己的认识给予发展创新,把它建成为一座美丽壮观的几何学大厦。公元前300年左右,他受到埃及国王托勒密一世的邀请,前往埃及的海滨城市亚历山大城主持数学教学,主要教授几何学。雅典良好学术气氛的熏陶,使他兼收并蓄,因而知识渊博。对待几何学教学,他勤恳耐心,兢兢业业,善于培养人才。几年之后,他的声名远播,使得亚历山大城成为远近闻名的数学研究中心,作为数学教师,欧几里德的名字也变得格外响亮。 求知无坦途欧几里德也反对那种急功近利的狭隘实用观点。据说有一次一位刚开始学几何的年轻后生,在第一道命题开讲时,他就提出来:“老师,学了几何有什么用,能得到什么好处?”欧几里德马上对身边的人说:“给他3个钱币,因为他想在学习中得到实利。”欧几里德这句话的意思是:追求知识的目的不应该是获得钱财的实利,而应当是追求知识本身。欧几里德—几何学之父有了大量的几何事实后,下一步就是怎么样把这些事实整理出来,方便人们学习。许多人都曾为此付出了心血,但他们的成果仍显得零乱和分散,没有章法,也不够全面。而被称为“几何学之父”的欧几里德,在这样一个时期,继承和整理了前人的成果,加入了自己的研究心得,将这些知识系统化和条理化,完成了流传千年的巨著《几何原本》。《几何原本》再如欧几里德提出了5个公理和5个公设:公理1与同一件东西相等的一些东西,它们彼此也是相等的。公理2等量加等量,总量仍相等。公理3等量减等量,余量仍相等。公理4彼此重合的东西彼此是相等的。公理5整体大于部分。公设1从任意的一个点到另外一个点作一条直线是可能的。公设2把有限的直线不断循直线延长是可能的。公设3以任一点为圆心和任一距离为半径作一圆是可能的。公设4所有的直角都相等。公设5如果一直线与两线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。勾股定理的证明在欧氏《几何原本》中的地位是很突出的。它的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。人们非常赞同这种巧妙的构思,因此,目前中学课本中还普遍保留这种方法。欧几里德的《几何原本》是一部不朽的数学巨著,2000多年来,它一直统治着几何教学,从来没有一本科学书籍,能够象《几何原本》那样连续长期巩固地成为亿万学生所传诵的读物。直到今天,我们课堂上所讲授的“平面几何”内容,仍然脱离不了《几何原本》的范围。《几何原本》从1482年第1次印刷之后,全世界用各种不同文字的版本出版了1000版以上,这样普及而大量地印刷出版,在历史上除了《圣经》之外,恐怕是任何著作都无法与之相比的,所以有人把《几何原本》称作“数学家的圣经”。欧几里德诞生的重大意义近代物理学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候,“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。《几何原本》的千年丰碑从《几何原本》问世后的2000多年里,它引导一代又一代青年人跨入数学殿堂,哥白尼、伽利略、牛顿、爱因斯坦,这些大名鼎鼎的大科学家,都曾得到这部书的许多教益,他们惊叹里面论证的精彩、逻辑之严密,对人类科学文化的发展,尤其是西方数学的发展,是一盏永不熄灭的明灯。《几何原本》到我国徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡日本等国,影响深远。徐光启要求全部译完《几何原本》,但利玛窦却认为应当适可而止。由于利玛窦的坚持,《几何原本》的后7卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。思考题: