预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一.数值积分的实现方法1.变步长辛普生法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:[I,n]=quad('fname',a,b,tol,trace)其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。例8-1求定积分。(1)建立被积函数文件fesin.m。functionf=fesin(x)f=exp(-0.5*x).*sin(x+pi/6);(2)调用数值积分函数quad求定积分。[S,n]=quad('fesin',0,3*pi)S=0.9008n=772.牛顿-柯特斯法基于牛顿-柯特斯法,MATLAB给出了quad8函数来求定积分。该函数的调用格式为:[I,n]=quad8('fname',a,b,tol,trace)其中参数的含义和quad函数相似,只是tol的缺省值取10-6。该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。(1)被积函数文件fx.m。functionf=fx(x)f=x.*sin(x)./(1+cos(x).*cos(x));(2)调用函数quad8求定积分。I=quad8('fx',0,pi)I=2.4674分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。调用函数quad求定积分:formatlong;fx=inline('exp(-x)');[I,n]=quad(fx,1,2.5,1e-10)I=0.28579444254766n=65调用函数quad8求定积分:formatlong;fx=inline('exp(-x)');[I,n]=quad8(fx,1,2.5,1e-10)I=0.28579444254754n=333.被积函数由一个表格定义在MATLAB中,对由表格形式定义的函数关系的求定积分问题用trapz(X,Y)函数。其中向量X,Y定义函数关系Y=f(X)。用trapz函数计算定积分。命令如下:x=1:0.01:2.5;Y=exp(-X);%生成函数关系数据向量trapz(X,Y)ans=0.285796824163938.1.3二重定积分的数值求解使用MATLAB提供的dblquad函数就可以直接求出上述二重定积分的数值解。该函数的调用格式为:I=dblquad(f,a,b,c,d,tol,trace)该函数求f(x,y)在[a,b]×[c,d]区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。计算二重定积分(1)建立一个函数文件fxy.m:functionf=fxy(x,y)globalki;ki=ki+1;%ki用于统计被积函数的调用次数f=exp(-x.^2/2).*sin(x.^2+y);(2)调用dblquad函数求解。globalki;ki=0;I=dblquad('fxy',-2,2,-1,1)kiI=1.57449318974494ki=1038二.数值微分数值微分的实现在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为:DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1。DX=diff(X,n):计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X))。DX=diff(A,n,dim):计算矩阵A的n阶差分,dim=1时(缺省状态),按列计算差分;dim=2,按行计算差分。生成以向量V=[1,2,3,4,5,6]为基础的范得蒙矩阵,按列进行差分运算。命令如下:V=vander(1:6)DV=diff(V)%计算V的一阶差分例8-7用不同的方法求函数f(x)的数值导数,并在同一个坐标系中做出f'(x)的图像。程序如下:f=inline('sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2');g=inline('(3*x.^2+4*x-1)./sqrt(x.^3+2*x.^2-x+12)/2+1/6./(x+5).^(5/6)+5');x=-3:0.01:3;p=polyfit(x,f(x),5);%用5次多项式p拟合f(x)dp=polyder(p);%对拟合多项式p求导数dpdpx=polyval(dp,x);%求dp在假设点的函数值dx=diff(f([x,3.01]))/0.01;%直接对f(x)求数值导数gx=g(x);%求函数f的导