预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

开放性问题 1.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分 别取点E,F,连结BE,CF. (1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明. (2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由. 分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH, (2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩 形可得出BH=EH时,四边形BFCE是矩形. 解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH, 在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS); (2)解:∵BH=CH,EH=FH, ∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形), ∵当BH=EH时,则BC=EF, ∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形). 2.猜想与证明: 如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的 结论. 拓展与延伸: (1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变, 则DM和ME的关系为DM=DE. (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立. 分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用 直角三角形中,斜边的中线等于斜边的一半证明. (1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用 直角三角形中,斜边的中线等于斜边的一半证明, (2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线 等于斜边的一半证明, 解答:猜想:DM=ME 证明:如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM, ∴DM=HM=ME, ∴DM=ME. (1)如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM, ∴DM=HM=ME, ∴DM=ME, 故答案为:DM=ME. (2)如图2,连接AE, ∵四边形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一条直线上, 在RT△ADF中,AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM=MF=ME, ∴DM=ME. 3.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥ BE. (1)求证:△BOE≌△DOF; (2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论. 分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得 到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证; (2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC, 即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得 证. 解答:(1)证明:∵DF∥BE, ∴∠FDO=∠EBO,∠DFO=∠BEO, ∵O为AC的中点,即OA=OC,AE=CF, ∴OA﹣AE=OC﹣CF,即OE=OF, 在△BOE和△DOF中, , ∴△BOE≌△DOF(AAS); (2)若OD=AC,则四边形ABCD是矩形,理由为: 证明:∵△BOE≌△DOF, ∴OB=OD, ∴OA=OB=OC=OD,即BD=AC, ∴四边形ABCD为矩形. 4.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC, CB上移动. (1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你 写出AE与DF的位置关系,并说明理由; (2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的 结论还成立吗?(请你直接回答“是”或“否”,不需证明) (3)如图③,当E,F分别在边CD,B