一种融合多注意力机制的行人重识别方法.pdf
秋花****姐姐
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种融合多注意力机制的行人重识别方法.pdf
本发明公开了一种融合多注意力机制的行人重识别方法,包括:1、下载用于训练模型的数据集,并对数据集进行预处理;2、搭建融入多注意力机制的行人重识别网络,并选择合适的目标函数来优化模型参数;3、采用相应的评估指标来评价模型的效果;4、用训练好的模型对从视频中截取出的行人图片进行行人身份识别;本发明使用堆叠的多层卷积神经网络,并通过融合通道注意力机制和空间注意力机制来提取行人的细粒度特征,从而通过训练学习可以从行人图片中得到更加有效的高维特征,进而达到更加准确的行人重识别效果。
一种基于残差多通道注意力多特征融合的行人重识别方法.pdf
一种基于残差多通道注意力多特征融合的行人重识别方法,涉及一种行人重识别方法,本发明构建残差双通道注意力模块,将残差块与残差双通道注意力模块相串联形成的新的残差注意力模块(RRMCA),使用所述的RRMCA模块搭建主干网络用来提取图像特征;形成三条分支网络,并进行特征融合;使用Softmax损失、三元组损失和中心损失联合优化模型;注意力机制的引入使网络有选择性地加强关键特征,抑制无用特征,提升网络的辨别能力和模型的表达能力,有效解决注意力机制引起的全局弱化问题,多尺度特征的融合成分提取行人的关键信息,获取具
一种基于多尺度特征融合的行人重识别方法.pdf
一种基于多尺度特征融合的行人重识别方法,1)构建基于多尺度融合的模型,并预训练主干网络暨多尺度特征提取器。2)利用多尺度特征提取器生成图像的多尺度特征。3)采用基于Transformer的特征校准模型融合两个不同尺度的特征。4)利用深监督融合从浅层特征到深层特征不断融合不同层级的特征。5)用交叉熵损失和三元组损失监督融合过程。6)将目标测试集图像输入训练好的模型提取特征,根据特征相似度进行排序得到行人重识别的结果,进而实现行人重识别。本发明采用卷积神经网络提取多尺度特征,使用Transformer从全局的
一种基于多尺度特征融合的视频行人重识别方法.pdf
本发明是一种基于多尺度特征融合的视频行人重识别方法,针对传统方法在对复杂的表观特征进行时序融合时效果不佳的问题,提出了一种基于多尺度特征融合的视频行人重识别网络模型。该模型在骨干网络的末端引出三个分支:全局特征分支、局部特征分支和时序注意力分支,分别提取不同尺度的图像级重识别特征和时序注意力权重,将不同尺度的重识别特征向量进行拼接并依据时序注意力权重进行融合,最后通过多特征独立训练策略,实现了准确的行人重识别,并通过对比实验对网络的结构化参数如局部特征数量、局部特征尺寸以及Bottleneck数量进行了优
一种基于注意力机制的多尺度特征融合行人检测方法.pdf
本发明公开了一种基于注意力机制的多尺度特征融合行人检测方法,包括:输入训练集和验证集,提取行人特征并生成特征图;输入网络模型,训练模型;是否达到指定批次,若是则输出模型并验证模型。本发明的基于注意力机制的多尺度特征融合行人检测方法将FCOS算法应用到行人检测中,在其基础上采用了密集金字塔结构,将顶层特征与底层特征进行融合,这样能够使融合后的特征具有底层的空间信息和顶层特征的细节信息,能够更好的识别出行人目标。其次,在融合后的特征融入空间和通道注意力,使其能够更精准的定位到行人目标。