一种基于残差多通道注意力多特征融合的行人重识别方法.pdf
一吃****新冬
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于残差多通道注意力多特征融合的行人重识别方法.pdf
一种基于残差多通道注意力多特征融合的行人重识别方法,涉及一种行人重识别方法,本发明构建残差双通道注意力模块,将残差块与残差双通道注意力模块相串联形成的新的残差注意力模块(RRMCA),使用所述的RRMCA模块搭建主干网络用来提取图像特征;形成三条分支网络,并进行特征融合;使用Softmax损失、三元组损失和中心损失联合优化模型;注意力机制的引入使网络有选择性地加强关键特征,抑制无用特征,提升网络的辨别能力和模型的表达能力,有效解决注意力机制引起的全局弱化问题,多尺度特征的融合成分提取行人的关键信息,获取具
一种基于多尺度特征融合的行人重识别方法.pdf
一种基于多尺度特征融合的行人重识别方法,1)构建基于多尺度融合的模型,并预训练主干网络暨多尺度特征提取器。2)利用多尺度特征提取器生成图像的多尺度特征。3)采用基于Transformer的特征校准模型融合两个不同尺度的特征。4)利用深监督融合从浅层特征到深层特征不断融合不同层级的特征。5)用交叉熵损失和三元组损失监督融合过程。6)将目标测试集图像输入训练好的模型提取特征,根据特征相似度进行排序得到行人重识别的结果,进而实现行人重识别。本发明采用卷积神经网络提取多尺度特征,使用Transformer从全局的
一种基于多尺度特征融合的视频行人重识别方法.pdf
本发明是一种基于多尺度特征融合的视频行人重识别方法,针对传统方法在对复杂的表观特征进行时序融合时效果不佳的问题,提出了一种基于多尺度特征融合的视频行人重识别网络模型。该模型在骨干网络的末端引出三个分支:全局特征分支、局部特征分支和时序注意力分支,分别提取不同尺度的图像级重识别特征和时序注意力权重,将不同尺度的重识别特征向量进行拼接并依据时序注意力权重进行融合,最后通过多特征独立训练策略,实现了准确的行人重识别,并通过对比实验对网络的结构化参数如局部特征数量、局部特征尺寸以及Bottleneck数量进行了优
基于特征融合的行人重识别方法.docx
基于特征融合的行人重识别方法基于特征融合的行人重识别方法随着摄像监控技术的不断发展,行人重识别技术在实际应用中变得越来越广泛。传统的行人重识别方法通常基于手工设计的特征,有效性受限。针对这个问题,近年来研究者们开始探索使用深度学习进行特征提取和融合,以提高行人重识别的准确性和鲁棒性。本文将介绍基于特征融合的行人重识别方法。1.基于深度学习的特征提取深度学习在人类视觉任务中取得了巨大成功。使用深度学习进行特征提取可以避免手工特征的限制,并在行人重识别领域中取得了显著的成果。目前,基于深度学习的行人重识别方法
一种融合多注意力机制的行人重识别方法.pdf
本发明公开了一种融合多注意力机制的行人重识别方法,包括:1、下载用于训练模型的数据集,并对数据集进行预处理;2、搭建融入多注意力机制的行人重识别网络,并选择合适的目标函数来优化模型参数;3、采用相应的评估指标来评价模型的效果;4、用训练好的模型对从视频中截取出的行人图片进行行人身份识别;本发明使用堆叠的多层卷积神经网络,并通过融合通道注意力机制和空间注意力机制来提取行人的细粒度特征,从而通过训练学习可以从行人图片中得到更加有效的高维特征,进而达到更加准确的行人重识别效果。