预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届石门中学高二数学第一学期期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、已知双曲线,则双曲线的渐近线方程为()A.B.C.D.3、已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()AB.C.D.4、已知椭圆:的左、右焦点分别为,,点P是椭圆上的动点,,,则的最小值为()A.B.CD.5、记等差数列的前n项和为,若,,则等于()A.5B.31C.38D.416、已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、已知数列满足:,,则()A.B.C.D.8、下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1B.2C.3D.49、圆与圆的位置关系是()A.相交B.相离C.内切D.外切10、已知圆的方程为,则圆心的坐标为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、若复数满足,则_____12、已知正数,满足.若恒成立,则实数的取值范围是______.13、已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.14、双曲线的实轴长为______.15、在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)16、若函数在处有极值,则的值为___________.三、解答题(本题共5小题,每题12分,共60分)17、在四棱锥中,底面是直角梯形,,,,分别是棱,的中点(1)证明:平面;(2)若,且四棱锥的体积是6,求三棱锥的体积18、【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.19、已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.20、已知函数,.(1)当时,求函数的极值;(2)若存在,使不等式成立,求实数的取值范围.21、已知四边形是菱形,四边形是矩形,平面平面,,,G是的中点(1)证明:平面;(2)求二面角的正弦值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三