预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届江苏省苏州市实验中学高二数学期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知向量,,则等于()A.B.C.D.2、函数的图象如图所示,是f(x)的导函数,则下列数值排序正确的是()AB.C.D.3、的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形4、《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“”.设分别是双曲线的左、右焦点,直线交双曲线左、右两支于两点,若恰好是的“勾”“股”,则此双曲线的离心率为()A.B.C.2D.5、2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A.B.C.D.6、某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元7、已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019B.2020C.2021D.20228、用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A.B.C.D.9、设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A.B.C.D.10、设,若直线与直线平行,则的值为()A.B.C.或D.二、填空题(本题共6小题,每题5分,共30分)11、复数(其中i为虚数单位)的共轭复数______12、年月我国成功发射了第一颗人造地球卫星“东方红一号”,这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为,远地点(离地面最远的点)距地面的高度约为,且地心、近地点、远地点三点在同一直线上,地球半径约为,则卫星运行轨道是上任意两点间的距离的最大值为___________13、已知向量,且,则实数________________14、已知存在正数使不等式成立,则的取值范围_____15、如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___16、已知函数,则________.三、解答题(本题共5小题,每题12分,共60分)17、已知(1)若函数在上有极值,求实数a的取值范围;(2)已知方程有两个不等实根,证明:(注:是自然对数的底数)18、在直三棱柱中,,,,,分别是,上的点,且(1)求证:∥平面;(2)求平面与平面所成锐二面角的余弦值19、已知点是圆上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于、两点,记、的斜率分别是、,以、为直径的圆的面积分别为、当、都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由20、等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.21、在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.2、答案:A【解析】结合导数的几何意义确定正确选项.【详解】,表示两点连线斜率,表示在处切线的斜率;表示在处切线的斜率;根据图象可知,.故选:A3、答案:B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.4、答案:A【解析】根据双曲线的定义及直角三角形斜边的中线定理,再结合双曲线的离心率公式即可求解.【详解】如图所示由题意可知,根据双曲线的定义知,是的中点且.在中,是的中