预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年石门中学高二数学第一学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在等比数列{}中,,,则=()A.9B.12C.±9D.±122、下列求导不正确的是()AB.C.D.3、抛物线的焦点到准线的距离为()A.B.C.D.4、如图所示,已知三棱锥,点,分别为,的中点,且,,,用,,表示,则等于()A.B.C.D.5、若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6B.10C.11D.126、已知函数的图象在点处的切线与直线垂直,则()A.B.C.D.7、直线的倾斜角为()A.B.C.D.8、在中,已知角A,B,C所对边为a,b,c,,,,则()A.B.C.D.19、2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日B.2022年11月11日C.2022年10月11日D.2022年9月11日10、《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、如图,已知AB,CD分别是圆柱上、下底面圆的直径,且,若该圆柱的底面圆直径是其母线长的2倍,则异面直线AC与BD所成角的余弦值为______12、曲线在点处的切线方程为_____________.13、有一组数据,其平均数为3,方差为2,则新的数据的方差为________.14、作边长为6的正三角形的内切圆,半径记为,在这个圆内作内接正三角形,然后再作新三角形的内切圆.如此下去,第n个正三角形的内切圆半径记为,则______,现有1个半径为的圆,2个半径为的圆,……,个半径为的圆,n个半径为的圆,则所有这些圆的面积之和为______15、与直线和直线的距离相等的直线方程为______16、直线与直线的夹角大小等于_______三、解答题(本题共5小题,每题12分,共60分)17、已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.18、已知双曲线与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.19、已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.20、已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.21、如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:2、答案:C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C3、答案:B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.4、答案:A【解析】连接,先根据已知条件表示出,再根据求得结果.【详解】连接,如下图所示:因为为的中点,所以,又因为为的中点,所以,所以,故选:A.5、答案:C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C6、答案:C【解析】对函数求导,利用导数的几何意义结合垂直关系计算作答.【详解】函数定义域为,求导得,于是得函数的图象在点处切线的斜率,而直线的斜率为,依题意,,即,解得,所以.故选:C7、答案:D【解析】若直线倾斜角为,由题设有,结合即可得倾斜角的大小.【详解】由直线方程,若其倾斜角为,则,而,∴.故选:D8、答案:B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.9、答案:C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解