预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省苏州市实验中学高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“”.设分别是双曲线的左、右焦点,直线交双曲线左、右两支于两点,若恰好是的“勾”“股”,则此双曲线的离心率为()A.B.C.2D.2、如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.3、2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日B.2022年11月11日C.2022年10月11日D.2022年9月11日4、双曲线的焦点坐标是()A.B.C.D.5、在等差数列中,,且,,,构成等比数列,则公差()A.0或2B.2C.0D.0或6、已知实数满足方程,则的最大值为()A.3B.2C.D.7、设变量满足约束条件:,则的最小值()A.B.C.D.8、已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A.B.C.D.9、设a,b,c分别是内角A,B,C的对边,若,,依次成公差不为0的等差数列,则()A.a,b,c依次成等差数列B.,,依次成等差数列C.,,依次成等比数列D.,,依次成等比数列10、世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880B.622C.311D.220二、填空题(本题共6小题,每题5分,共30分)11、随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______12、函数的图象在点处的切线方程为____.13、某工厂年前加紧手套生产,设该工厂连续5天生产的手套数依次为,,,,(单位:万只),若这组数据,,,,的方差为4,且,,,,的平均数为8,则该工厂这5天平均每天生产手套______万只14、已知抛物线的焦点为,准线为,过点的直线与抛物线交于A,B两点(点B在第一象限),与准线交于点P.若,,则____________.15、已知.若在定义域内单调递增,则实数的取值范围为______.16、若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.三、解答题(本题共5小题,每题12分,共60分)17、如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.18、(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围19、已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.20、已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k21、如图,在三棱锥A-BCD中,O为线段BD中点,是边长为1正三角形,且OA⊥BC,AB=AD(1)证明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE与平面BCD的夹角的余弦值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据双曲线的定义及直角三角形斜边的中线定理,再结合双曲线的离心率公式即可求解.【详解】如图所示由题意可知,根据双曲线的定义知,是的中点且.在中,是的中点,所以,因为直线的斜率为,所以,所以.所以是等边三角形,.在中,.由双曲线的定义,得,所以双曲线的离心率为.故选:A.2、答案:D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D3、答案:C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存