预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省苏州市实验中学高二数学第二学期期末监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3B.2C.1D.02、随机抽取甲乙两位同学连续9次成绩(单位:分),得到如图所示的成绩茎叶图,关于这9次成绩,则下列说法正确的是()A.甲成绩的中位数为33B.乙成绩的极差为40C.甲乙两人成绩的众数相等D.甲成绩的平均数低于乙成绩的平均数3、直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A.B.C.D.4、已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A.B.C.D.5、,,,,设,则下列判断中正确的是()A.B.C.D.6、已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0B.1C.2D.37、双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12B.2或18C.18D.28、若双曲线的焦距为,则双曲线的渐近线方程为()A.B.C.D.9、下列说法正确的个数有()(ⅰ)命题“若,则”的否命题为:“若,则”;(ⅱ)“,”的否定为“,使得”;(ⅲ)命题“若,则有实根”为真命题;(ⅳ)命题“若,则”的否命题为真命题;A.1个B.2个C.3个D.4个10、已知数列满足,,则的最小值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.12、已知存在正数使不等式成立,则的取值范围_____13、已知抛物线的焦点为,过焦点的直线交抛物线与两点,且,则拋物线的准线方程为________.14、与同一条直线都相交的两条直线的位置关系是________15、已知数列满足,且,则______,数列的通项_____16、函数,其导函数为函数,则__________三、解答题(本题共5小题,每题12分,共60分)17、已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.18、已知数列{}满足a1=1,a3+a7=18,且(n≥2)(1)求数列{}的通项公式;(2)若=·,求数列的前n项和19、已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.20、设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.21、已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.2、答案:D【解析】按照茎叶图所给的数据计算即可.【详解】由茎叶图可知,甲的成绩为:11,22,23,24,32,32,33,41,52,其中位数为32,众数为32,平均数为;乙的成绩为:10,22,31,32,35,42,42,50,52,极差为52-10=42,众数为42,平均数为;由以上数据可知,A错误,B错误,C错误,D正确;故选:D.3、答案:A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题4、答案:D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D5、答案:D【解析】通过凑配构造的方式,构造出新式子,且可以化简为整数,然后利用放缩思想得到S的范围.【详解】解:,,,,,;,.故选:D6、答案:C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C7、答案:C