预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广西钦州市高二数学期末质量跟踪监视模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数,的值域为()A.B.C.D.2、已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2B.C.D.3、命题“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则4、已知向量与平行,则()A.B.C.D.5、某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.规定成绩低于13秒为优,成绩高于14.8秒为不达标.由直方图推断,下列选项错误的是()A.直方图中a的值为0.40B.由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C.由直方图估计本校高三男生100米体能测试成绩为优的人数为54D.由直方图估计本校高三男生100米体能测试成绩为不达标的人数为186、已知点,,,动点P满足,则的取值范围为()A.B.C.D.7、等差数列中,,则()A.B.C.D.8、直线在轴上的截距为,在轴上的截距为,则有()A.,B.,C.,D.,9、已知抛物线,则其焦点到准线的距离为()A.B.C.1D.410、已知直线与圆交于A,B两点,O为原点,且,则实数m等于()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、若,,三点共线,则m的值为___________.12、古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.13、已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积14、某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系为,则当s时,弹簧振子的瞬时速度为_________mm/s.15、直线l交椭圆于A,B两点,线段AB的中点为,直线是线段AB的垂直平分线,若,D为垂足,则D点的轨迹方程是______16、将数列{n}按“第n组有n个数”的规则分组如下:(1),(2,3),(4,5,6),…,则第22组中的第一个数是_________三、解答题(本题共5小题,每题12分,共60分)17、某校从高三年级学生中随机抽取名学生的某次数学考试成绩,将其成绩分成,,,,的组,制成如图所示的频率分布直方图.(1)求图中的值;(2)估计这组数据的平均数;(3)若成绩在内的学生中男生占.现从成绩在内的学生中随机抽取人进行分析,求人中恰有名女生的概率.18、动点与定点的距离和它到定直线的距离的比是,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)已知过点的直线与曲线C相交于两点,,请问点P能否为线段的中点,并说明理由.19、如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.20、已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.21、已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.2、答案:D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D3、答案:C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C4、答案:D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.5、答案:D【解析】根据频率之和为求得,结合众数、频率等知识对选项进行分析,从而确定正确答案.【详解】,解得,A选项正确.众数为,B选项正确.成绩低于秒的频率为,人数为,所以C选项正确.成绩高于的频率为,人数为人,D选项错误.故选:D6、答案:C【解析】由题设分析知的轨迹为(不与重合),要求的取值范围,只需求出到圆上点的距离范围即可.【详解】由题设,在以为直径的圆上,令,则(不与重合),所以的取值范围,即为到圆上点的距离范围,