预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年平煤高级中学高二数学第一学期期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知椭圆的离心率为,双曲线的离心率为,则()A.B.C.D.2、若数列满足,,则该数列的前2021项的乘积是()A.B.C.2D.13、在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A.B.C.D.4、函数的单调增区间为()A.B.C.D.5、甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种B.6种C.4种D.12种6、在数列中,,则等于A.B.C.D.7、在等比数列中,,,则等于()A.90B.30C.70D.408、已知双曲线C的离心率为,则双曲线C的渐近线方程为()A.B.C.D.9、若的解集是,则等于()A.-14B.-6C.6D.1410、圆与圆的位置关系为()A.外切B.内切C.相交D.相离二、填空题(本题共6小题,每题5分,共30分)11、已知某圆锥的高为4,体积为,则其侧面积为________12、某位同学参加物理、化学、政治科目的等级考,依据以往成绩估算该同学在物理、化学、政治科目等级中达的概率分别为假设各门科目考试的结果互不影响,则该同学等级考至多有1门学科没有获得的概率为___________.13、圆关于y轴对称的圆的标准方程为___________.14、双曲线的焦距为____________15、已知点,抛物线的焦点为,点是抛物线上任意一点,则周长的最小值是__________.16、函数的单调递减区间是____三、解答题(本题共5小题,每题12分,共60分)17、已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程18、已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.19、在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.20、已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和21、一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据给定的方程求出离心率,的表达式,再计算判断作答.【详解】因椭圆的离心率为,则有,因双曲线的离心率为,则有,所以.故选:D2、答案:C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.3、答案:D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D4、答案:D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.5、答案:B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B6、答案:D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律7、答案:D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D8、答案:B【解析】根据双曲线的离心率,求出即可得到结论【详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B9、答案:A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.10、答案:A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A二、填空题(本题共6小题,每题5分,共30分)11、答案:【解析】设该圆锥的底面半径为r,由圆锥的体积V=πr2h,可解得r的值,再由勾股定理求得圆锥的母线长l,而侧面积S=πrl,代入数据即可得解【详解】设该圆锥