预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年内蒙古通辽实验中学高二数学第二学期期末统考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、集合,,则()A.B.C.D.2、胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A.B.的方差大于的方差C.品种的众数为D.品种的中位数为3、某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5B.10C.8D.94、在四棱锥中,底面是正方形,为的中点,若,则()A.B.C.D.5、过抛物线()的焦点作斜率大于的直线交抛物线于,两点(在的上方),且与准线交于点,若,则A.B.C.D.6、已知函数,其导函数的图象如图所示,则()A.在上为减函数B.在处取极小值C.在上为减函数D.在处取极大值7、若存在,使得不等式成立,则实数k的取值范围为()A.B.C.D.8、已知向量,,且,则的值为()A.B.C.或D.或9、已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A.B.C.D.10、已知双曲线C:的渐近线方程是,则m=()A.3B.6C.9D.二、填空题(本题共6小题,每题5分,共30分)11、已知数列的前项和则____________________12、某足球俱乐部选拔青少年队员,每人要进行3项测试.甲队员每项测试通过的概率均为,且不同测试之间相互独立,设他通过的测试项目数为X,则_________13、已知函数的单调递减区间是,则的值为______.14、如图是某赛季CBA广东东莞银行队甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙比赛得分的中位数之和是______.15、如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)16、命题“,”为假命题,则实数a的取值范围是______三、解答题(本题共5小题,每题12分,共60分)17、已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.18、已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.19、已知在△中,角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△的面积S的最大值.20、已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值21、如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.2、答案:C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础3、答案:B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B4、答案:C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.5、答案:A【解析】分别过作准线的垂线,垂足分别为,设,则,,故选A.6、答案:C【解析】首先利用导函数的图像求和的解,进而得到函数的单调区间和极值点.【详解】由导函数的图象可知:当时,或;当时,或,所以的单调递增区间为和,单调递减区间为和,故在处取得极大值,在处取得极小值,在处取得极大值.故选:C.7、答案:C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以QUOTE,所以.故选:C8、答案:C【解析】根据空