预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年浙江省杭州地区七校高二数学第一学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1平行于l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、若正实数、满足,且不等式有解,则实数取值范围是()A.或B.或C.D.3、设等差数列的前n项和为,且,则()A.64B.72C.80D.1444、若直线经过,,两点,则直线的倾斜角的取值范围是()A.B.C.D.5、曲线在点处的切线方程是A.B.C.D.6、阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,则椭圆的面积公式为,若椭圆的离心率为,面积为,则椭圆的标准方程为()A.或B.或C.或D.或7、如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数B.当时,取得最小值C.当时,取得极大值D.在上是增函数,在上是减函数8、设函数是奇函数的导函数,且,当时,,则不等式的解集为()A.B.C.D.9、在中,B=30°,BC=2,AB=,则边AC的长等于()A.B.1C.D.210、过点且与直线垂直的直线方程是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、当为任意实数时,直线恒过定点,则以点C为圆心,半径为圆的标准方程______12、若把英语单词“”的字母顺序写错了,则可能出现的错误有______种13、已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.14、已知向量,,若向量与向量平行,则实数______15、直线与圆相交于A,B两点,则______16、已知椭圆的左、右焦点为,过作x轴垂线交椭圆于点P,若为等腰直角三角形,则椭圆的离心率是___________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.18、一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线(如图所示).选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为,其中,是常数.(1)当时,判断并证明的奇偶性;(2)当时,若最小值为,求的最小值.19、已知抛物线C的方程为:,点(1)若直线与抛物线C相交于A、B两点,且P为线段AB的中点,求直线的方程.(2)若直线过交抛物线C于M,N两点,F为抛物线C的焦点,求的最小值20、在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;21、已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】利用两直线平行的等价条件求得m,再结合充分必要条件进行判断即可.【详解】由直线l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1平行于l2”的充要条件,故选C.【点睛】本题考查两直线平行的条件,准确计算是关键,注意充分必要条件的判断是基础题2、答案:A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷3、答案:B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.4、答案:D【解析】应用两点式求直线斜率得,结合及,即可求的范围.【详解】根据题意,直线经过,,,∴直线的斜率,又,∴,即,又,∴;故选:D5、答案:D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.6、答案:B【解析】根据题意列出的关系式,即可求得,再分焦点在轴与轴两种情况写出标准方程.【详解】根据题意,可得,所以椭圆的标准方程为或.故选:B7、答案:D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.