预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年浙江省杭州七县高二数学期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A.B.C.D.2、设,,,则下列不等式中一定成立的是()A.B.C.D.3、若抛物线焦点与椭圆的右焦点重合,则的值为A.B.C.D.4、如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A.B.C.D.5、某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关6、椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A.B.C.D.7、下列命题为真命题的是()A.若,则B.若,则C.若,则D.若,则8、圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A.B.C.D.9、已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A.B.C.D.10、函数的单调增区间为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、曲线在点处的切线方程为__________.12、某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试平均分为______13、下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).14、若动直线分别与函数和的图像交于A,B两点,则的最小值为______15、给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.16、已知,用割线逼近切线的方法可以求得___________.三、解答题(本题共5小题,每题12分,共60分)17、已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程18、如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.19、已知圆D经过点A(-1,0),B(3,0),C(1,2).(1)求圆D的标准方程;(2)若直线l:与圆D交于M、N两点,求线段MN的长度.20、设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.21、2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.我市某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能,服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为:,,,,,得到频率分布直方图如图所示,其中(1)求,的值,估计这100名学生参加公益劳动的总时间的平均数(同一组中的每一个数据可用该组区间的中点值代替);(2)学校要在参加公益劳动总时间在、这两组的学生中用分层抽样的方法选取5人进行感受交流,再从这5人中随机抽取2人进行感受分享,求这2人来自不同组的概率参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题2、答案:B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,