预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省苏州市高二数学第一学期期末综合测试试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知圆M的圆心在直线上,且点,在M上,则M的方程为()A.B.C.D.2、对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A.B.C.D.4、已知定义在上的函数满足:,且,则的解集为()A.B.C.D.5、设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A.B.C.D.6、等差数列中,已知,则()A.36B.27C.18D.97、已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条B.3条C.2条D.1条8、焦点为的抛物线标准方程是()A.B.C.D.9、“,”的否定是A.,B.,C.,D.,10、将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、长方体中,,已知点与三点共线且,则点到平面的距离为________12、命题,恒成立是假命题,则实数a取值范围是________________13、已知双曲线的焦点,过F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的方程为_________14、底面半径为1,母线长为2的圆锥的体积为______15、若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________16、已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______三、解答题(本题共5小题,每题12分,共60分)17、如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.18、设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.19、已知圆内有一点,过点作直线交圆于、两点(1)当经过圆心时,求直线的方程;(2)当弦的长为时,求直线的方程20、如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;21、在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C2、答案:B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.3、答案:C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C4、答案:A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.5、答案:A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.6、答案:B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B7、答案:A【解析】