预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省射阳县实验初中高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知公差为的等差数列满足,则()AB.C.D.2、下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等3、从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”4、椭圆的长轴长是短轴长的2倍,则离心率()A.B.C.D.5、瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1B.2C.3D.46、已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5B.10C.20D.407、已知向量,且,则()A.B.C.D.8、函数的图像大致是()AB.C.D.9、已知,若,则()A.B.2C.D.e10、直线与曲线相切于点,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)12、如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________.13、将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第9行从左向右的第2个数为__________.14、已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数在R上恒有<2(x∈R),则不等式f(x)<2x+1的解集为______.15、已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.16、已知空间向量,,,若,,共面,则实数___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆过点,且离心率(1)求椭圆的方程;(2)设点为椭圆的左焦点,点,过点作的垂线交椭圆于点,,连接与交于点①若,求;②求的值18、已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.19、如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由20、在平面直角坐标系中,点在抛物线上(1)求的值;(2)若直线l与抛物线C交于,两点,,且,求的最小值21、已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C2、答案:B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.3、答案:C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌