预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省射阳县实验初中高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2B.6C.8D.102、已知p:,q:,那么p是q的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3、已知向量,且,则的值为()A.4B.2C.3D.14、曲线在点处的切线方程是A.B.C.D.5、已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A.B.C.D.6、设是等差数列的前项和,已知,,则等于()A.B.C.D.7、从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A.B.C.D.8、正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A.B.C.D.9、在平行六面体中,,,,则()A.B.5C.D.310、记为等差数列的前项和.若,,则的公差为()A.1B.2C.4D.8二、填空题(本题共6小题,每题5分,共30分)11、已知双曲线,则圆的圆心C到双曲线渐近线的距离为______12、已知等差数列的公差为1,且是和的等比中项,则前10项的和为___________.13、“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员,面向全社会的优质平台,现日益成为老百姓了解国家动态,紧跟时代脉搏的热门APP,某市宣传部门为了解全民利用“学习强国”了解国家动态的情况,从全市抽取2000名人员进行调查,统计他们每周利用“学习强国”的时长,下图是根据调查结果绘制的频率分布直方图(1)根据上图,求所有被抽查人员利用“学习强国”的平均时长和中位数;(2)宣传部为了了解大家利用“学习强国”的具体情况,准备采用分层抽样的方法从和组中抽取50人了解情况,则两组各抽取多少人?再利用分层抽样从抽取的50入中选5人参加一个座谈会,现从参加座谈会的5人中随机抽取两人发言,求小组中至少有1人发言的概率?14、“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.15、在2021件产品中有10件次品,任意抽取3件,则抽到次品个数的数学期望的值是______.16、如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)三、解答题(本题共5小题,每题12分,共60分)17、已知直线和,设a为实数,分别根据下列条件求a的值:(1)(2)18、已知函数的图像在处的切线斜率为,且时,有极值.(1)求的解析式;(2)求在上的最大值和最小值.19、已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程20、已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点21、平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C2、答案:C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.3、答案:A【解析】由题意可得,利用空间向量数量积的坐标表示列方程,解方程即可求解.【详解】因为,所以,因为向量,,所以,解得,所以的值为,故选:A.4、答案:D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.5、答案:B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选