预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省仪征中学高二数学期末质量跟踪监视模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设为直线上任意一点,过总能作圆的切线,则的最大值为()A.B.1C.D.2、如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A.B.C.D.3、已知等比数列中,,,则该数列的公比为()A.B.C.D.4、已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A.B.C.D.5、圆与圆的位置关系是()A.相离B.内含C.相切D.相交6、已知圆的方程为,则实数m的取值范围是()A.B.C.D.7、为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A.B.C.D.8、如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A.B.C.D.9、在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰或直角三角形10、已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上B.在轴上C.当时在轴上D.当时在轴上二、填空题(本题共6小题,每题5分,共30分)11、已知等差数列的公差不为零,若,,成等比数列,则______.12、过点作圆的切线,则切线方程为______.13、已知圆:,圆:,则圆与圆的位置关系是______14、已知、双曲线的左、右焦点,A、B为双曲线上关于原点对称的两点,且满足,,则双曲线的离心率为___________.15、如图,正四棱锥的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE上的动点,则MN的最小值为______16、已知直线与圆交于两点,则面积的最大值为__________.三、解答题(本题共5小题,每题12分,共60分)17、在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.18、已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围19、设四边形为矩形,点为平面外一点,且平面,若,.(1)求与平面所成角的大小;(2)在边上是否存在一点,使得点到平面的距离为,若存在,求出的值,若不存在,请说明理由;(3)若点是的中点,在内确定一点,使的值最小,并求此时的值.20、已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围21、已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据题意,判断点与圆的位置关系以及直线与圆的位置关系,根据直线与圆的位置关系,即可求得的最大值.【详解】因为过过总能作圆的切线,故点在圆外或圆上,也即直线与圆相离或相切,则,即,解得,故的最大值为.故选:D.2、答案:D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.3、答案:C【解析】设等比数列的公比为,可得出,即可得解.【详解】设等比数列的公比为,可得出.故选:C.4、答案:D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题5、答案:D【解析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D6、答案:C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【