预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届河北邯郸高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则2、已知数列为等比数列,,则的值为()A.B.C.D.23、已知命题,,则()A.,B.,C.,D.,4、为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A.B.C.D.5、已知等差数列中的、是函数的两个不同的极值点,则的值为()A.B.1C.2D.36、设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A.B.C.D.7、直线的倾斜角是()A.B.C.D.8、经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A.B.C.D.9、实数m变化时,方程表示的曲线不可以是()A.直线B.圆C椭圆D.双曲线10、函数在的图象大致为()A.B.CD.二、填空题(本题共6小题,每题5分,共30分)11、如图,正方体中,点E,F,G分别是,AB,的中点,则直线与GF所成角的大小是______(用反三角函数表示)12、已知直线:与直线:平行,则的值为___________.13、若函数恰有两个极值点,则k的取值范围是______14、已知向量,,,若,则____________.15、已知,是椭圆:的两个焦点,点在上,则的最大值为________16、已知对任意正实数m,n,p,q,有如下结论成立:若,则有成立,现已知椭圆上存在一点P,,为其焦点,在中,,,则椭圆的离心率为______三、解答题(本题共5小题,每题12分,共60分)17、如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积18、设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围19、已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.20、已知函数(1)若在上单调递减,求实数a的取值范围(2)若是方程的两个不相等的实数根,证明:21、“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.2、答案:B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B3、答案:C【解析】利用全称量词命题的否定可得出结论.【详解】命题为全称量词命题,该命题的否定为,.故选:C.4、答案:B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.5、答案:C【解析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C6、答案:B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B7、答案:A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.8、答案:A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题9、答案:B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可