预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙东北联盟高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若等比数列满足,,则数列的公比为()A.B.C.D.2、已知椭圆的一个焦点坐标为,则的值为()A.B.C.D.3、曲线在点处的切线过点,则实数()A.B.0C.1D.24、函数在定义域上是增函数,则实数m的取值范围为()A.B.C.D.5、将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A.B.C.D.6、意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012B.1346C.1348D.13507、一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A.B.C.D.8、如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A.B.C.2D.9、若,则()A.22B.19C.-20D.-1910、已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A.B.2C.3D.0二、填空题(本题共6小题,每题5分,共30分)11、椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.12、某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.13、直线过抛物线的焦点F,且与C交于A,B两点,则___________.14、如图所示的是一个正方体的平面展开图,,则在原来的正方体中,直线与平面所成角的正弦值为___________.15、函数在上的最大值为______________16、在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)三、解答题(本题共5小题,每题12分,共60分)17、求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线18、已知椭圆上顶点与椭圆的左,右顶点连线的斜率之积为(1)求椭圆C的离心率;(2)若直线与椭圆C相交于A,B两点,,求椭圆C的标准方程19、如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.20、如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.21、已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D2、答案:B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.3、答案:A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A4、答案:A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A5、答案:A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.6、答案:C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故选:C.7、答案:A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.8、答案:D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定