预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙东北联盟高二数学期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若直线的方向向量为,平面的法向量为,则()A.B.C.D.与相交但不垂直2、“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件3、已知等差数列满足,,则()A.B.C.D.4、函数在和处的导数的大小关系是()A.B.C.D.不能确定5、抛物线的焦点是A.B.C.D.6、两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0B.x﹣3y+5=0C.x﹣2y+6=0D.x+3y﹣8=07、已知,则下列三个数,,()A.都不大于-4B.至少有一个不大于-4C.都不小于-4D.至少有一个不小于-48、若圆上恰有2个点到直线的距离为1,则实数的取值范围为()AB.C.D.9、,则与分别为()A.与B.与C.与0D.0与10、2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知圆的方程为,点是直线上的一个动点,过点作圆的两条切线为切点,则四边形面积的最小值为__________;直线__________过定点.12、以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)13、已知椭圆的左、右焦点分别为,,为椭圆上一点,垂直于轴,且为等腰三角形,则椭圆的离心率为__________14、如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,、分别为、的中点.设异面直线与所成的角为,则的最大值为____15、平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.16、已知定点,点在直线上运动,则,两点的最短距离为________三、解答题(本题共5小题,每题12分,共60分)17、为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.18、已知直线,直线,直线(1)若与的倾斜角互补,求m的值;(2)当m为何值时,三条直线能围成一个直角三角形19、如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.20、已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由21、在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为,其离心率,且椭圆C经过点.(1)求椭圆C的标准方程;(2)过点M作两条不同的直线与椭圆C分别交于点A,B(均异于点M).若∠AMB的角平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】通过判断直线的方向向量与平面的法向量的关系,可得结论【详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B2、答案:A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.3、答案:D【