预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广西桂林市阳朔中学高二数学期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30mB.C.D.2、已知等比数列,且,则()A.16B.32C.24D.643、命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0D.∃x0∈R,|x0|+≥04、如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A.B.C.D.5、设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A.B.C.D.6、设等比数列的前项和为,若,,则()A.66B.65C.64D.637、若,则()AB.C.D.8、函数是偶函数且在上单调递减,,则的解集为()A.B.C.D.9、平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A.B.C.D.10、圆的圆心和半径分别是()A.,B.,C.,D.,二、填空题(本题共6小题,每题5分,共30分)11、已知.若在定义域内单调递增,则实数的取值范围为______.12、在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.13、程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.14、已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________15、数据6,8,9,10,7的方差为______16、古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A、B的距离之比为定值(且)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系中,,,点满足,则点P的轨迹方程为__________.(答案写成标准方程),的最小值为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.18、如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.19、已知点是抛物线C:上的点,F为抛物线的焦点,且,直线l:与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若,求k的值.20、如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.21、设数列的前项和为,为等比数列,且,(1)求数列和的通项公式;(2)设,求数列的前项和参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D2、答案:A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A3、答案:C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.4、答案:A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A5、答案:B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.6、答案:B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.7、答案:D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D8、答案:D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,