预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广东省韶关市新丰一中高二数学第二学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4B.6C.D.2、已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为AB.4C.D.3、在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A.B.C.D.4、某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万B.64.72万C.66.81万D.66.94万5、过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条B.2条C.3条D.4条6、已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为()A.B.C.D.7、如图所示的程序框图,阅读下面的程序框图,则输出的S=()A.14B.20C.30D.558、下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1B.2C.3D.09、已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3B.6C.8D.1210、若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2B.1C.0D.-2二、填空题(本题共6小题,每题5分,共30分)11、数列满足,,其前n项积为,则______12、已知正项等比数列的前项和为,且,则_______13、若,则数列的前21项和___________.14、若曲线在点处的切线斜率为,则___________.15、已知椭圆:的左右焦点分别为,为椭圆上的一点,与椭圆交于.若△的内切圆与线段在其中点处相切,与切于,则椭圆的离心率为_______16、某工厂的某种型号的机器的使用年限和所支出的维修费用(万元)有下表的统计资料:23456223.85.56.57.0根据上表可得回归直线方程,则=_____.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由18、已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值19、已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.20、如图,在四棱锥P-ABCD中,平面ABCD,,,,,.(1)证明:平面平面PAC;(2)求平面PCD与平面PAB夹角的余弦值.21、已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D2、答案:D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题3、答案:D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即