预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广东省揭阳市高二数学第二学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知实数x,y满足约束条件,则的最大值为()A.B.0C.3D.52、命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数3、已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则B.若,则C若,则D.若,则4、记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.①B.②C.③D.④5、已知,,若,则实数的值为()A.B.C.D.26、运行如图所示程序后,输出的结果为()A.15B.17C.19D.217、若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交8、王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件B.充分条件C.充要条件D.既不充分也不必要9、若抛物线的焦点与椭圆的右焦点重合,则的值为A.B.C.D.10、若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、命题“,”为假命题,则实数a的取值范围是______12、已知P为抛物线上的一个动点,设P到抛物线准线的距离为d,点,那么的最小值为______13、已知是椭圆的左、右焦点,在椭圆上运动,当的值最小时,的面积为_______14、计算:________15、已知数列是等差数列,若,则___________.16、已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数在R上恒有<2(x∈R),则不等式f(x)<2x+1的解集为______.三、解答题(本题共5小题,每题12分,共60分)17、若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由18、根据下列条件求圆的方程:(1)圆心在点O(0,0),半径r=3(2)圆心在点O(0,0),且经过点M(3,4)19、如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值20、已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程21、(1)求过点,且与直线垂直的直线方程;(2)甲,乙,丙等7名同学站成一排,若甲和乙相邻,但甲乙二人都不和丙相邻,则共有多少种不同排法?参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D2、答案:C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题3、答案:C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C4、答案:B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B5、答案:D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.6、答案:D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D7、答案:D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,