预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市翁牛特旗乌丹第二中学高二数学第一学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若直线与圆:相切,则()A.-2B.-2或6C.2D.-6或22、已知定义在R上的函数满足,且有,则的解集为()A.B.C.D.3、方程化简的结果是()A.B.C.D.4、已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0B.1C.2D.35、在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A.B.C.D.6、已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1B.C.D.7、圆的圆心到直线的距离为2,则()A.B.C.D.28、已知函数,则()A.函数的极大值为,无极小值B.函数的极小值为,无极大值C.函数的极大值为0,无极小值D.函数的极小值为0,无极大值9、过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A.B.C.D.10、如果向量,,共面,则实数的值是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.12、已知点为椭圆上的动点,为圆的任意一条直径,则的最大值是__________13、将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)14、曲线在点处的切线方程为_______.15、设函数,,对任意的,都有成立,则实数的取值范围是______16、在等差数列中,,公差,则_________三、解答题(本题共5小题,每题12分,共60分)17、在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.18、已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.19、已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:20、已知抛物线的焦点为F,点是抛物线上的点,且.(1)求抛物线方程;(2)直线与抛物线交于、两点,且.求△OPQ面积的最小值.21、已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B2、答案:A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A.3、答案:D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D4、答案:A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A5、答案:D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D6、答案:B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可