预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市翁牛特旗乌丹第二中学高二数学期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值B.有最大值C.有最小值D.有最大值2、已知a,b为正实数,且,则的最小值为()A.1B.2C.4D.63、正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A.B.C.D.4、若,则下列不等式①;②;③;④中,正确的不等式有()A.0个B.1个C.2个D.3个5、函数的单调增区间为()A.B.C.D.6、已知空间向量,,则()A.B.C.D.7、已知数列为递增等比数列,,则数列的前2019项和()A.B.C.D.8、已知函数满足对于恒成立,设则下列不等关系正确是()A.B.C.D.9、方程表示的图形是A.两个半圆B.两个圆C.圆D.半圆10、边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知,,则以AB为直径的圆的方程为___________.12、若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.13、从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.14、如图,棱长为2的正方体中,E,F分别为棱、的中点,G为面对角线上一个动点,则三棱锥的外接球表面积的最小值为___________.15、已知圆关于直线对称,则________16、执行如图所示的程序框图,则输出的S=__.三、解答题(本题共5小题,每题12分,共60分)17、已知函数.(1)求的单调递增区间;(2)求在的最大值.18、已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.19、已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长20、如图,直三棱柱中,底面是边长为2的等边三角形,D为棱AC中点.(1)证明:AB1//平面;(2)若面B1BC1与面BC1D的夹角余弦值为,求.21、已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【点睛】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.2、答案:D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D3、答案:C【解析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.4、答案:C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.5、答案:D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.6、答案:C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C7、答案:C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.8、答案:A【解析】由条件可得函数为