预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市翁牛特旗乌丹第二中学高二数学第一学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5B.6C.7D.82、沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30D.7月份的利润最大3、在数列中,,则的值为()A.B.C.D.以上都不对4、双曲线的焦点坐标为()A.B.C.D.5、在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5B.;C.;D.;6、阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A.B.C.D.7、等比数列中,,,则()A.B.C.D.8、已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A.B.C.D.9、抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A.B.C.D.10、已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2B.-2C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.12、在等比数列中,,则______13、若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______14、已知两平行直线与间的距离为3,则C的值是________.15、数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数16、已知数列满足,将数列按如下方式排列成新数列:,,,,,,,,,…,,….则新数列的前70项和为______三、解答题(本题共5小题,每题12分,共60分)17、设为数列的前n项和,且满足(1)求证:数列为等差数列;(2)若,且成等比数列,求数列的前项和18、已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.19、如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.20、已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.21、已知等比数列的公比为,前项和为,,,(1)求(2)在平面直角坐标系中,设点,直线的斜率为,且,求数列的通项公式参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B2、答案:B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B3、答案:C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.4、答案:C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.5、答案:B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B6、答案:B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B7、答案:D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D8、