预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市翁牛特旗乌丹第二中学高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30°B.45°C.60°D.90°2、已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2B.C.D.3、已知函数,则等于()A.0B.2C.D.4、若方程表示双曲线,则实数m的取值范围是()A.B.C.D.5、若函数既有极大值又有极小值,则实数a的取值范围是()A.B.C.D.6、下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切7、已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A.B.C.D.8、用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24B.12C.81D.649、下列直线中,倾斜角为锐角的是()A.B.C.D.10、若展开式的二项式系数之和为,则展开式的常数项为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、中国古代《易经》一书中记载,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位古人在从右到左依次排列的红绳子上打结,满三进一,用来记录每年进的钱数.由图可得,这位古人一年的收入的钱数为___________.12、如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________13、阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________14、已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组15、椭圆的左、右焦点分别为,,过焦点的直线交该椭圆于两点,若的内切圆面积为,两点的坐标分别为,,则的面积________,的值为________.16、在数列中,,,则数列中最大项的数值为__________三、解答题(本题共5小题,每题12分,共60分)17、p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.18、已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.19、某快递公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)在这60天中包裹件数在和的两组中,用分层抽样的方法抽取30件,求在这两组中应分别抽取多少件?20、已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.21、已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C2、答案:D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D3、答案:D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.4、答案:A【解析】方程化为圆锥曲线(椭圆与双曲线)标准方程的形式,然后由方程表示双曲线可得不等关系【详解】解:方程可化为,它表示双曲线,则,解得.故选:A5、答案:B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.6、答案:D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.7、答案:C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,